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Abstract

Boolean Half-spaces or Linear Threshold Functions (LTFs) are an important class of
Boolean functions which come up in Learning Theory (Perceptrons), Social Choice Theory
etc.. We will study lower bounds on the stability of LTFs.

Firstly, we look at the problem of finding the best lower bound for the total level-0
and level-1 weight of LTFs, denoted by W 1[LTF ], which is conjectured to be 2

π
. We will

present the well-known bound of W 1[LTF ] ≥ 1
2

[GL94], and then look at some recent
progress [DDS12] which shows that W 1[LTF ] ≥ 1

2
+ c for some c > 0.

We then look at a stronger conjecture from [BKS98] which claims that Majn is the least
stable among all LTFs on n(odd) variables. We give a counter example to this conjecture.
We conjecture that for any LTF f, Stabρ[f ] ≥ 2

π
arcsin ρ ∀ρ ∈ [0, 1] and then give evidence

for this new conjecture.
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Chapter 1

Fourier Analysis of Boolean
Functions

1.1 Boolean Functions and Boolean Half-spaces

Definition 1. f : {−1, 1}n → {−1, 1} are called Boolean functions. f : {−1, 1}n → R are
called real-valued functions on the Boolean hypercube.

Definition 2. f : {−1, 1}n → {−1, 1} given by f(x) = sgn(l(x)) where l(x) = a0 + a1x1 +
· · · + anxn are called Boolean Half-spaces or Linear Threshold Functions (LTFs). We as-
sume l(x) 6= 0 ∀x. If a0 = 0, f is called a balanced LTF

For example Majn(x) = sgn(x1 + · · ·+ xn) when n is odd is a balanced LTF called the
majority on n-bits∗.

Geometrically, LTFs are partitions of the hypercube by a hyperplane†. All the points
in one half-space are labelled 1 and those in the other half-space are labelled -1 as shown
in Figure 1.1. Balanced half-spaces have hyperplanes passing through the origin.

1.2 Fourier Analysis

1.2.1 Inner Product Space

The set of all real-valued functions on the hypercube {−1, 1}n forms a vector space Vn
with field R. We will define an inner product in this space as follows:

Definition 3. Let f, g ∈ Vn, 〈f, g〉 := E
x∼{−1,1}n

[f(x)g(x)] where the expectation is over the

uniform distribution on the hypercube

∗ whenever Majn is mentioned, it is assumed that n is odd
†which we assume doesn’t pass through any point on the hypercube
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Figure 1.1: Partition of a hypercube by a hyperplane

Definition 4. χS(x) :=
∏

i∈S xi where S ⊂ [n], these are called Parity Functions on the
hypercube.

Proposition 1. {χS : S ⊂ [n]} is an orthonormal basis for (Vn, 〈·, ·〉)

Proof.

〈χS, χT 〉 = E
x
[
∏
i∈S

xi
∏
j∈T

xj] = E
x
[
∏

k∈S∆T

xk
∏
l∈S∩T

x2
l ] = E

x
[
∏

k∈S∆T

xk] = 1S=T

Thus {χS : S ⊂ [n]} is an orthonormal set and thus independent. Also,

| {χS : S ⊂ [n]} | = 2n = dim(Vn)

Thus {χS : S ⊂ [n]} is an orthonormal basis for Vn

Since the parity functions form a basis, every function can be written uniquely as their
linear combination.

Corollary 1. Every f : {−1, 1}n → R can be uniquely expressed as a multilinear polyno-
mial f(x) =

∑
S⊂[n] f̂(S)χS(x) where f̂(S) ∈ R{

f̂(S) : S ⊂ [n]
}

are called the Fourier coefficients of f .

The Fourier coefficient f̂(S) = 〈f, χS〉 = E
x
[f(x)χS(x)] is the correlation between f and

χS.

For example Maj3(x) can be written as a multilinear polynomial uniquely as,

Maj3(x) =
1

2
x1 +

1

2
x2 +

1

2
x3 −

1

2
x1x2x3

Thus M̂aj3(∅) = 0, M̂aj3({1}) = M̂aj3({2}) = M̂aj3({3}) = 1
2
, M̂aj3({1, 2}) = M̂aj3({2, 3}) =

M̂aj3({3, 1}) = 0, M̂aj3({1, 2, 3}) = −1
2
,
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The following is a simple proposition about Fourier coefficients of even and odd func-
tions:

Proposition 2. If f is an even function i.e. f(−x) = f(x), then f̂(S) = 0 whenever |S|
is odd. Similarly if f is an odd function i.e. f(−x) = −f(x), then f̂(S) = 0 whenever |S|
is even.

Proof. χS(x) is odd(even) iff |S| is odd(even). Thus f(x)χS(x) is odd in both the given
cases. Thus

f̂(S) = E
x
[f(x)χS(x)] = E

x
[f(−x)χS(−x)] = −E

x
[f(x)χS(x)] = −f̂(S)

Hence f̂(S) = 0

For example, balanced LTFs are odd functions. So their Fourier coefficients at even
levels are 0.

We will also introduce the following norms on Vn.

Definition 5. ‖f‖p := E
x
[|f(x)|p]

1
p for p > 0, in particular ‖f‖2 = 〈f, f〉 12

1.2.2 Parseval and Level-k Weights

Proposition 3 (Plancherel Identity). Let f, g ∈ Vn then 〈f, g〉 =
∑

S f̂(S)ĝ(S)

Proof. 〈f, g〉 =
∑

S

∑
T f̂(S)ĝ(T )〈χS, χT 〉 =

∑
S f̂(S)ĝ(S)

Corollary 2 (Parseval Identity). If f : {−1, 1}n → {−1, 1} then
∑

S f̂(S)2 = 1

Proof.
∑

S f̂(S)2 = 〈f, f〉 = E
x
[f 2] = 1

Parseval identity implies that for Boolean functions, f̂(S)2 gives a probability distribu-
tion on subsets of [n]. This distribution is called the spectral distribution Sf .

Definition 6. Let f ∈ Vn. f̂(S)2 is called the weight of f at S. The level-k weight of f ,
W k[f ] :=

∑
|S|=k f̂(S)2. Similarly W≤k[f ] :=

∑
|S|≤k f̂(S)2 and so on.

Parseval can be rephrased as, for Boolean functions f,
∑n

i=0W
i[f ] = 1 i.e. their total

weight 1 is distributed among the n+ 1 layers

Boolean functions having most of their weight concentrated on the lower layers are
usually simple and easy to learn. Theorem 1 makes this precise.
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Theorem 1. (Low-Degree Algorithm) If f : {−1, 1}n → {−1, 1} and W>k < ε/2 then f
can be learned with ε-error in time Poly(nk, 1/ε) using random examples (x, f(x)) where x
is sampled from uniform distribution on {−1, 1}n i.e. we can find g : {−1, 1}n → {−1, 1}
which is given as the sign of a degree k multilinear polynomial‡ such that Pr

x
[f(x) 6= g(x)] <

ε

1.3 Stability

Definition 7. Let ρ ∈ [−1, 1], x, y ∈ {−1, 1}n. We say (x, y) is a ρ-correlated pair of
random strings if the pairs of random bits {(xi, yi) : i ∈ [n]} are mutually independent and
E[xi] = E[yi] = 0,E[xiyi] = ρ. We also write this as y ∼ Nρ(x)

When ρ ∈ [0, 1], this is equivalent to choosing x ∼ {−1, 1}n and then

yi =


xi w.p ρ

1 w.p 1−ρ
2

−1 w.p 1−ρ
2

So you can look at y ∼ Nρ(x) as y being a noisy version of x where the noise is parametrized
by ρ

Definition 8. Stabρ[f ] := E
(x,y):ρ−correlated

[f(x)f(y)]

You can think of stability as the correlation between f and a noisy version of f . When
f is a Boolean function,

Stabρ[f ] = 1− 2 Pr
(x,y):ρ−correlated

[f(x) 6= f(y)]

We now give a Fourier based formula for stability.

Proposition 4. Stabρ[f ] =
∑

S ρ
|S|f̂(S)2 =

∑n
i=0 ρ

iW i[f ]

Proof.

E
(x,y):ρ−correlated

[χS(x)χT (y)] = E
(x,y):ρ−correlated

[
∏
i∈S∩T

xiyi
∏
j∈S\T

xj
∏
k∈T\S

yk]

= ρ|S|1S=T

Stabρ[f ] = E
(x,y):ρ−correlated

[f(x)f(y)] = E
(x,y):ρ−correlated

[
∑
S

∑
T

f̂(S)f̂(T )χS(x)χT (y)]

=
∑
S

∑
T

f̂(S)f̂(T ) E
(x,y):ρ−correlated

[χS(x)χT (y)]

=
∑
S

ρ|S|f̂(S)2

‡g can be calculated at any point in O(nk) time
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1.3.1 Stability of Majority

Theorem 2 (Multidimensional Central Limit Theorem [Tao]). Let X1, · · · , Xn be i.i.d
random vectors in Rm with mean 0 (i.e. E[Xk] = 0) and covariance matrix Σ (i.e. Σij =

E[X1iX1j]) then 1√
n

∑
kXk −→

distribution
N (0,Σ)§

We will now calculate the stability of Majn for large n.

Proposition 5. Stabρ[Majn] −→
n→∞

2
π

arcsin ρ

Proof.

Stabρ[Majn] = 1− 2 Pr
(x,y):ρ−correlated

[Majn(x) 6= Majn(y)]

−→
n→∞

1− 2 Pr
(Z1,Z2):ρ−correlated gaussians

[sgn(Z1) 6= sgn(Z2)] (2−Dimensional CLT)

=
2

π
arcsin ρ =

2

π
(ρ+

1

6
ρ3 +

3

40
ρ5 + · · · )

From this we get W 1[Majn] −→
n→∞

2
π
,W 3[Majn] −→

n→∞
1

3π
and so on.

1.4 Derivatives & Laplacian

We will define linear operators on the space Vn called the derivative and Laplacian opera-
tors.

Definition 9. Dif(x) := 1
2
[f(xi→1)− f(xi→−1)] where xi→1 is vector x with ith bit fixed to

1 and similarly xi→−1. Di is linear and is called the ith-directional derivative.

Di acts like a formal derivative on polynomials.

Proposition 6. Dif(x) =
∑

S3i f̂(S)χS\{i}(x)

Proof.

DiχS =

{
0 if i /∈ S
χS\{i} if i ∈ S

The rest follows from linearity of Di

Definition 10. Lif(x) := 1
2
[f(x)− f(x⊕i)] = xiDif(x) where x⊕i is the vector x with its

ith bit flipped. Li is linear and is called ith-directional Laplacian. L =
∑n

i=1 Li is called the
Laplacian.

§Normal distribution with mean 0 and covariance matrix Σ
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Proposition 7.

• Lif(x) =
∑

S3i f̂(S)χS(x)

• Lf(x) =
∑

S |S|f̂(S)χS(x)

• 〈f, Lf〉 =
∑

S |S|f̂(S)2 =
∑n

i=1 iW
i[f ]

Proof.

LiχS =

{
0 if i /∈ S
χS if i ∈ S

The rest follows from linearity of Li and L

The Laplacian as defined above is related to the graph Laplacian. Recall the graph
Laplacian,

〈f, Lf〉 =
∑

(u,v)∈E

(fu − fv)2

which is the total variance across the edges.

In our definition,

〈f, Lf〉 =
n

4
E

(u,v)∈E
[(f(u)− f(v))2]

where E is the edge set of hypercube. Thus our Laplacian only differs from the standard
Laplacian on the hypercube graph by a multiplicative constant.

1.5 Influence

Definition 11. Let f : {−1, 1}n → {−1, 1}. Infi(f) := Pr
x

[f(x) 6= f(x⊕i)] where x⊕i is x

with ith bit flipped. Inf(f) =
∑n

i=1 Infi(f)

• Infi(f) is the fraction of dimension-i edges which are boundary edges

• 1
n
Inf(f) is the fraction of edges which are boundary edges

Figure 1.2: white points correspond to 1 and grey points correspond to -1. Blacks edges
are the boundary (bichromatic) edges.
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Definition 12. A Boolean function f : {−1, 1}n → {−1, 1} is said to be increasing in
variable i if f(xi→1) ≥ f(xi→−1) i.e. Dif ≥ 0. A decreasing function is similarly defined.
f is said to be monotone in variable i if it is either increasing in i or decreasing in i.

Proposition 8.

1. Infi(f) = ‖Dif‖2
2 =

∑
S3i f̂(S)2

2. Inf(f) =
∑n

k=0 kW
k[f ] = dStabρ[f ]

dρ
|ρ=1

3. If f is a Boolean function increasing in variable i then Infi(f) = f̂(i). If f is
decreasing in variable i then Infi(f) = −f̂(i)

Proof. 1. Infi(f) = E
x
[1f(x)6=f(x⊕i)] = E

x
[(Dif)2] =

∑
S3i f̂(S)2

2. Inf(f) =
∑

i Infi(f) =
∑

i

∑
S3i f̂(S)2 =

∑
S |S|f̂(S)2 =

∑
k kW

k[f ]. The other part
follows from Stabρ[f ] =

∑
kW

k[f ]ρk

3. If f is increasing in variable i then Dif ∈ {0, 1} and so Infi(f) = E
x
[Dif ] = f̂(i). If

f is decreasing in variable i then Dif ∈ {−1, 0} and so Infi(f) = E
x
[−Dif ] = −f̂(i)

Proposition 9. ˆMajn(i) = Infi(Majn) = 1
2n−1

(
n−1
n−1
2

)
Proof. Majority is increasing in each variable and thus ˆMajn(i) = Infi(Majn).

Infi(Majn) = Pr
x

[Majn(x) 6= Majn(x⊕i)] = Pr
x

[
∑
j 6=i

xj = 0] =
1

2n−1

(
n− 1
n−1

2

)
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Chapter 2

Level-1 Weight of LTFs

2.1 Chow Parameters

Theorem 3 ([Cho61]). Let f, g be LTFs. If f̂(S) = ĝ(S) ∀ |S| ≤ 1 then f = g.

Proof.

Let f(x) = sgn(l(x)), l(x) = l0 +
∑
i

lixi, l(x) 6= 0 ∀ x

f̂(∅)l0 +
∑
i

f̂(i)li = E[f(x)l(x)] = E[|l(x)|] ≥ E[g(x)l(x)] = ĝ(∅)l0 +
∑
i

ĝ(i)li

By hypothesis, the first and the last terms are equal. So

|l(x)| = g(x)l(x)⇒ g(x) = sgn(l(x)) = f(x) since l(x) 6= 0

The parameters f̂(∅), f̂(1), · · · , f̂(n)∗ uniquely determine f among LTFs and are called
Chow parameters

For balanced LTFs, which are odd functions, f̂(∅) = E
x
[f(x)] = 0. So f̂(1), · · · , f̂(n)

uniquely determine balanced LTFs.

2.2 Level-1 Weight Conjecture

Let f be an LTF, then what is the best lower bound on W≤1[f ]?

There are two extreme cases:

• For dictators χi(x) = xi, W
≤1[f ] = 1

• For majority Majn(x) = sgn(x1 + · · ·+ xn), W≤1[Majn] −→
n→∞

2
π

∗we write f̂(i) instead of f̂({i}) for brevity
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So intuitively, one of them should be the worst case which is Majn here. This is precisely
the conjecture.

Conjecture 1. W≤1[LTF ] := inff W
≤1[f ] = 2

π
where the infimum is over all LTFs

For balanced LTFs, W 0[f ] = 0. It is enough to check the validity of conjecture 1 for
balanced LTFs which follows from the following proposition.

Proposition 10. Let f be an LTF, then there exists a balanced LTF g such that W 1[g] =
W≤1[f ]

Proof. Let f : {−1, 1}n → {−1, 1} given by f(x) = sgn(l.x+ θ)

Let g : {−1, 1}n+1 → {−1, 1} be given by g(x, xn+1) = sgn(l.x+ θxn+1),
then for 1 ≤ i ≤ n,

ĝ(i) = E
x,xn+1

[sgn(l.x+ θxn+1)xi]

=
1

2
(E
x
[sgn(l.x+ θ)xi] + E

x
[sgn(l.x− θ)xi])

=
1

2
(E
x
[sgn(l.x+ θ)xi] + E

x
[sgn(−l.x− θ)(−xi)]) = f̂(i)

Similarly

ĝ(n+ 1) = E
x,xn+1

[sgn(l.x+ θxn+1)xn+1]

=
1

2
(E
x
[sgn(l.x+ θ)] + E

x
[− sgn(l.x− θ)])

=
1

2
(E
x
[sgn(l.x+ θ)] + E

x
[− sgn(−l.x− θ)]) = f̂(∅)

So W 1[g] = W≤1[f ]

2.3 Gotsman-Linial

The following is a well-known bound on W≤1[f ] when f is an LTF:

Theorem 4 ([GL94]). Let f = sgn(l(x)) where l(x) = a0 + a1x1 + · · · + anxn,
∑

i a
2
i = 1

then W≤1[f ] ≥ ‖l‖2
1

Proof.

‖l‖1 = E
x
[|l(x)|] = E

x
[f(x)l(x)] = 〈f, l〉 ≤ f̂(∅)a0 +

n∑
i=1

f̂(i)ai ≤
√
W≤1[f ]

where we have used Plancherel identity(3) and the last inequality is by Cauchy-Schwarz
inequality.
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Combining this with the well-known Khintchine-Kahane inequality (Corollary 4) gives
us a lower bound on W≤1[LTF ].

Corollary 3 ([GL94]). W≤1[LTF ] ≥ 1
2

Proof. Let f = sgn(l(x)) be any LTF. By Khintchine-Kahane inequality (Corollary 4)
‖l‖1 ≥ 1√

2
and thus W≤1[f ] ≥ ‖l‖2

1 ≥ 1
2

We will prove Khintchine-Kahane inequality in section 2.5

2.4 Regular-LTF

We have seen that in conjectures 1 and 2, Majn as n→∞ is the extreme case. Intuitively
when a function is very close to majority, the inequalities in the conjectures should be
approximately tight. We will prove this now by a notion of closeness called regularity.

Definition 13. If f = sgn(a1x1 + · · ·+ anxn) where
∑

i a
2
i = 1 and maxi |ai| ≤ ε then f is

called an ε-regular LTF

The smaller the ε, the closer it is to Majn which is 1√
n
-regular.

We will need a central limit theorem with explicit error bounds.

Theorem 5 (Berry-Esséen [O’Db]). Let X1, · · · , Xn be independent random variables sat-
isfying E[Xi] = 0 ∀i ∈ [n],

∑
i E[X2

i ] = 1 and
∑

i E[|Xi|3] = ρ, then S =
∑

iXi is

ρ-close to N (0, 1) in distribution. Also their first absolute moments are O(ρ)-close i.e. for
Z ∼ N (0, 1)

• ∀ t |Pr[S ≤ t]− Pr[Z ≤ t]| ≤ ρ

• |E[|S|]− E[|Z|]| ≤ O(ρ)

Theorem 6. If f = sgn(
∑

i aixi) is an ε-regular LTF then W 1[f ] ≥ 2
π
−O(ε)

Proof. Let l(x) =
∑

i aixi, Xi = aixi, then E[Xi] = 0,
∑

i E[X2
i ] =

∑
i a

2
i = 1 and∑

i E[|Xi|3] =
∑

i |ai|3 ≤ maxi |ai| ≤ ε

l(x) =
∑

iXi, so by Berry-Esséen Theorem, E[|l|] = E[|N (0, 1)|]±O(ε) =
√

2
π
±O(ε)

By theorem 4, W 1[f ] ≥ ‖l‖2
1 = 2

π
±O(ε)
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2.5 Khintchine-Kahane Inequality

We will first prove a weaker form of Khintchine-Kahane inequality which has a more natural
proof.

Theorem 7 (Weak KK). Let l : {−1, 1}n → R be given by l(x) =
∑n

1 lixi + l0 and
E[l2] =

∑n
i=0 l

2
i = 1 then ‖l‖1 = E[|l|] ≥ 1√

3

Proof. Let L = |l|
E[L4] =

∑
i

l4i + 6
∑
i<j

l2i l
2
j ≤ 3(

∑
i

l2i )
2 = 3

Using Hölder’s inequality on Lα and Lβ with a, b norms such that α + β = 2, 1
a

+ 1
b

=
1, aα = 4, bβ = 1 i.e. a = 3, b = 3/2 gives

E[L2] ≤ E[L4]1/3E[L]2/3 ⇒ E[L] ≥ 1√
3

We will now prove the actual Khintchine-Kahane inequality with a more general hy-
pothesis.

Theorem 8 (Khintchine-Kahane inequality). Let g : {−1, 1}n → R be given by g(x) =
‖
∑n

i=1wixi‖∗ where wi ∈ V , V is a normed space with norm ‖·‖∗ then

‖g‖1 ≥
1√
2
‖g‖2

Proof.

∀ x Lg(x) =
1

2

∑
i

[g(x)− g(x⊕i)] =
1

2
[ng(x)−

∑
i

g(x⊕i)] ≤ g(x)

where the last inequality follows from triangle inequality for ‖·‖∗ as follows:∑
i

g(x⊕i) =
∑
i

‖w · x⊕i‖∗ ≤ ‖w ·
∑
i

x⊕i‖∗ = (n− 2)‖w · x‖∗ = (n− 2)g(x)

Now ‖g‖2
2 = 〈g, g〉 ≥ 〈g, Lg〉 =

∑
i−even

iW i[g] ≥ 2
n∑
i=0

W i[g]− 2W 0[g] = 2‖g‖2
2 − 2‖g‖2

1

where we have used the fact that g is even and thus by proposition 2, W i[g] = 0 when i is
odd.

Corollary 4. Let l(x) = w0 +
∑n

i=1 wixi where
∑n

i=0 w
2
i = 1 then E[|l|] = ‖l‖1 ≥ 1√

2

Proof. Let l′ : {−1, 1}n+1 → R be given by l′(x) =
∑n

i=0wixi.

E[|l′|] =
1

2
E[|w0 + w · x|+ | − w0 + w · x|] = E[|w0 + w · x|] = E[|l|]

By Parseval identity(2) ‖l′‖2
2 =

∑n
i=0 w

2
i = 1 and thus by theorem 8 ‖l‖1 = ‖l′‖1 ≥ 1√

2

13



Geometric Interpretation

How do we geometrically interpret the above corollary? Let us assume that w0 = 0, thus
l(x) = 0 is a hyperplane that passes through the origin. Also |l(x)| = |w ·x| is the distance
of point x from the plane l(x) = 0. Thus the above corollary is proving that the average
distance of a point on the hypercube from any plane that passes through the origin is
atleast 1√

2

Tight instances for Khintchine-Kahane inequality

When is Khintchine-Kahane inequality tight?

Definition 14. We say a = (a1, · · · , an) is canonical if ai ≥ 0, a1 ≥ · · · ≥ an and∑
i a

2
i = 1

Proposition 11. Let g(x) = |w · x|, w is canonical. Then

‖g‖1 =
1√
2
⇔ w = (

1√
2
,

1√
2
, 0, · · · , 0)

Proof Sketch. The two inequalities that we used in the proof of Khintchine-Kahane in-
equality (theorem 8) are:

• 〈g, Lg〉 ≤ 〈g, g〉

• W≥4[g] ≥ 0

For the first inequality to be tight, ∀ x Lg(x) = g(x) or g(x) = 0. This implies that the
hyperplane g(x) = 0 cannot strictly intersect any edges of the hypercube. From this we
can conclude that w should be of the form (w1, · · · , w1, 0, · · · , 0), w1 > 0.

Now for the second inequality to be tight, the number of w1 should be exactly two i.e.
w = ( 1√

2
, 1√

2
, 0, · · · , 0)

2.6 Gotsman-Linial is not tight

There was a recent result which made some progress on the conjecture, it was shown that
Gotsman-Linial is not tight.

Theorem 9 ([DDS12]). W≤1[LTF ] ≥ 1
2

+ c for some absolute constant c > 0

The two inequalities used in the proof of Gotsman-Linial (corollary 3) are:

• Cauchy-Schwarz inequality

• Khintchine-Kahane inequality

It can be shown that both cannot be simultaneously tight, atleast one of them has to have
a constant slack. This is proved using a robust version of Khintchine-Kahane inequality.

14



Robust Khintchine-Kahane inequality

We have seen that the only tight instances for Khintchine-Kahane inequality in canonical
form are l(x) = 1√

2
(x1 + x2) (proposition 11). Intuitively if we are moving far away from

this tight instance then Khintchine-Kahane inequality must have increasing slack.

Theorem 10 ([DDS12]). If l(x) = a ·x, a is canonical, then ‖l‖1 ≥ 1√
2

+ c‖a−a∗‖2 where

a∗ = ( 1√
2
, 1√

2
, 0, · · · , 0) and c > 0 is some absolute constant

The proof of theorem 9 is then divided into two cases:

Case I: ‖a− a∗‖2 ≥ τ

Khintchine-Kahane inequality is not tight because of theorem 10

Case II: ‖a− a∗‖2 ≤ τ

Cauchy-Schwarz not tight

15



Chapter 3

Stability of LTFs

3.1 Majority is least stable Conjecture

There is an other related conjecture which is stronger than conjecture 1. Let us calculate
stability for the two extreme cases of dictatorship and majority. Intuitively, one of them
is an extreme case.

• Stabρ[χi] = ρ

• Stabρ[Majn] −→
n→∞

2
π

arcsin ρ = 2
π
(ρ+ 1

6
ρ3 + 3

40
ρ5 + · · · )

Conjecture 2 ([BKS98]). ∀ LTF f on n(odd) inputs, Stabρ[f ] ≥ Stab[Majn] ∀ ρ ∈ [0, 1]

Note that this conjecture implies conjecture 1 since for a balanced LTF f ,
Stabρ[f ] −→

ρ→0
W 1[f ]ρ and Stabρ[Majn] −→

ρ→0

2
π
ρ

3.2 Counter Example

We now give a counter example to conjecture 2.

Let f : {−1, 1}5 → {−1, 1} be given by f(x) = sgn(x1 + x2 + x3 + 2x4 + 2x5). Clearly

f(x) = Maj5(x)− 21{x1=x2=x3=1,x4=x5=−1} + 21{x1=x2=x3=−1,x4=x5=1}

We can calculate the stabilities to be,

Stabρ[f ] = 0.6875ρ+ 0.25ρ3 + 0.0625ρ5

Stabρ[Maj5] = 0.703125ρ+ 0.28125ρ3 + 0.015625ρ5

Figure 3.1 shows the plot of Stabρ[f ]

ρ
(blue) and Stabρ[Maj5]

ρ
(red). Observe that the level-1

weight of f is less than that of Maj5

16



Figure 3.1: Graphs of Stabρ[f ]

ρ
and Stabρ[Maj5]

ρ

We now extend this example to general odd n > 5.

Let f : {−1, 1}2t+1 → {−1, 1} be a LTF given by f(x) = sgn(a
∑t+1

i=1 xi + b
∑2t+1

i=t+2 xi)
where a, b ∈ N are chosen such that (t+ 1)a− tb < 0, ta− a+ b− (t− 1)b > 0 and a+ b is
odd. When a + b is odd, a

∑t+1
i=1 xi + b

∑2t+1
i=t+2 xi 6= 0 ∀x. So we need t+1

t
< b

a
< t−1

t−2
. But

since t+1
t
< t−1

t−2
∀t > 2, we can always find such a pair (a, b). So,

f(x) = Maj2t+1(x)− 21{x1=···=xt+1=1,xt+2=···=x2t+1=−1} + 21{x1=···=xt+1=−1,xt+2=···=x2t+1=1}

= Maj2t+1(x)− 2
t+1∏
i=1

(
1 + xi

2

) 2t+1∏
i=t+2

(
1− xi

2

)
+ 2

t+1∏
i=1

(
1− xi

2

) 2t+1∏
i=t+2

(
1 + xi

2

)
Theorem 11. For f defined as above W 1[f ] < W 1[Maj2t+1] and thus Stabρ[f ] < Stabρ[Maj2t+1]
where ρ ∈ [0, ε] for some ε > 0

Proof. Let n = 2t+ 1.

f̂(i) =

{
ˆMajn(i)− 1

2n−2 1 ≤ i ≤ t+ 1
ˆMajn(i) + 1

2n−2 t+ 2 ≤ i ≤ 2t+ 1

By proposition 9, ˆMajn(i) = 1
2n−1

(
n−1
n−1
2

)
∀i

W 1[f ] = (t+ 1)[ ˆMajn(1)− 1

2n−2
]2 + t[ ˆMajn(1) +

1

2n−2
]2

= W 1[Majn]−

(
n−1
n−1
2

)
− n

22(n−2)
< W 1[Majn]
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3.3 New Conjecture

We now introduce a new conjecture.

Conjecture 3. ∀ LTF f, Stabρ[f ] ≥ 2
π

arcsin ρ ∀ρ ∈ [0, 1]

Here again, we need only look at balanced LTF.

Proposition 12. Let f = sgn(a0 +
∑n

i=1 aixi) be an LTF and let f ′ = sgn(
∑n

i=0 aixi) then
Stabρ[f ] ≥ Stabρ[f

′]

Proof.

Stabρ[f
′] = E

(x,y)∼ρ
[sgn(a0x0 +

n∑
i=1

aixi)sgn(a0y0 +
n∑
i=1

aiyi)]

= E
(x,y)∼ρ

[sgn(a0 +
n∑
i=1

aixi)sgn(a0 +
n∑
i=1

aiyi)]

(
1 + ρ

2

)
− E

(x,y)∼ρ
[sgn(a0 +

n∑
i=1

aixi)sgn(a0 −
n∑
i=1

aiyi)]

(
1− ρ

2

)
= Stabρ[f ]

(
1 + ρ

2

)
− Stab−ρ[f ]

(
1− ρ

2

)
=
∑
k odd

W k[f ]ρk + ρ
∑
k even

W k[f ]ρk ≤
∑
k

W k[f ]ρk = Stabρ[f ]

3.4 Evidence for the conjecture

3.4.1 Majority

By proposition 5, we know that Majn tends to 2
π

arcsin ρ for large n. Now we will show
that it converges from above.

Theorem 12. For k ≤ n and n odd, W k[Majn] > W k[Majn+2]

We can evaluate W k[Majn]. Refer section 5.3 of [O’Da] for a proof.

Theorem 13. Let n be odd, then Stabρ[Majn] ≥ Stabρ[Majn+2] and thus Stabρ[Majn] ≥
2
π

arcsin ρ ∀ρ ∈ [0, 1]
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Proof. ∗ Let f(ρ) = Stabρ[Majn]− Stabρ[Majn+2]. Clearly f(0) = f(1) = 0.

ρf ′(ρ) =
n∑
k=0

k(W k[Majn]−W k[Majn+2])ρk − (n+ 2)W n+2[Majn+2]ρn+2

≤
n∑
k=0

(n+ 2)(W k[Majn]−W k[Majn+2])ρk − (n+ 2)W n+2[Majn+2]ρn+2

= (n+ 2)f(ρ)

Since f is a smooth function on [0, 1], it attains its minimum say f(ρ∗). If f(ρ∗) < 0
then ρ∗ 6= 0, 1 and thus f ′(ρ∗) = 0. But 0 = ρ∗f ′(ρ∗) ≤ (n + 2)f(ρ∗) < 0 which is a
contradiction. Thus f(ρ) ≥ 0 ∀ρ ∈ [0, 1].

By proposition 5 we know that Stabρ[Majn] −→
n→∞

2
π

arcsin ρ, so we get Stabρ[Majn] ≥
2
π

arcsin ρ

Figure 3.2 shows Majn for n = 3, 4, 5, 6 and 2
π

arcsin ρ
ρ

(orange)

Figure 3.2: Stabρ[Majn]

ρ
for n=3,5,7,9 and 2

π
arcsin ρ

ρ

3.4.2 Regular-LTF

We have seen regular-LTFs in section 2.4. Now we will prove a stronger version of theorem
6.

Theorem 14. If f = sgn(
∑

i aixi) is an ε-regular LTF then |Stabρ[f ] − 2
π

arcsin ρ| ≤
O( ε√

1−ρ2
)

∗Proof due to Swagato Sanyal (http://www.tcs.tifr.res.in/people/swagato-sanyal)
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Proof. By Berry-Esséen theorem,
∑

i aixi ≈ε N (0, 1)

Stabρ[f ] = 1− 2 Pr
(x,y) ρ−correlated

[f(x) 6= f(y)]

→
2d Berry−Esseen

1− 2 Pr
(Z1,Z2) ρ−corr N (0,1)

[sgn(Z1) 6= sgn(Z2)]±O(
ε√

1− ρ2
)

=
2

π
arcsin ρ±O(

ε√
1− ρ2

)

3.4.3 Behaviour near ρ = 1

Proposition 13. ∀ LTF f on n(odd) variables, Inf(f) ≤ Inf(Majn)

Proof. Let f(x) = sgn(w0 +
∑n

i=1 wixi). We can assume wi ≥ 0 for i ∈ [n], this is because
influences do not change by changing signs of wi. Now f is increasing in each variable, so
by proposition 8

Inf(f) =
∑
i

f̂(i) = E[f(x)(
∑
i

xi)] ≤ E[|
∑
i

xi|] = E[sgn(
∑
i

xi)(
∑
i

xi)] = Inf(Majn)

Corollary 5. ∀ LTF f : {−1, 1}n → {−1, 1}, Stabρ[f ] ≥ Stabρ[Majn] ≥ 2
π

arcsin ρ for ρ
in some neighbourhood of 1.

Proof. Stab1[f ] = 1 = Stab1[Majn]. By proposition 8,

dStabρ[f ]

dρ
|ρ=1 = Inf[f ] ≤ Inf[Majn] =

dStabρ[Majn]

dρ
|ρ=1

So by a Taylor expansion around ρ = 1 we get the desired result.

Note that the above theorem doesn’t give a uniform neighbourhood of 1 in which the
conjecture is true, the neighbourhood depends on the function.

A more precise estimate can be given about the stability near ρ = 1. The conjecture
implies that

Stab1−ε[f ] ≥ 2

π
arcsin(1− ε) = 1− 2

π

√
2ε−O(ε3/2)

A similar albeit weaker bound is indeed known.

Theorem 15 ([Per04]). ∀ LTF f, Stab1−ε[f ] ≥ 1−
√

2
π

√
2ε−O(ε3/2)

Refer section 5.5 of [O’Da] for a proof.
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3.4.4 Behaviour near ρ = 0

The conjecture is true near ρ = 0 iff the level-1 conjecture(1) is true. This is because

Stabρ[f ] = W 1[f ]ρ+O(ρ2) ≥ 2

π
arcsin ρ ≥ 2

π
ρ
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