
Locality in Coding Theory

Sivakanth Gopi

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Professor Zeev Dvir

September 2018

c© Copyright by Sivakanth Gopi, 2018.

All rights reserved.

Abstract

Error correcting codes have been extremely successful in practice to build storage

and communication systems which are resilient to noise and corruptions. They also

found several theoretical applications in complexity theory, pseudorandomness, prob-

abilistically checkable proofs and cryptography. Each application requires codes with

specific properties. One such property desirable in many applications is ‘locality’.

Locality refers to the ability to perform operations like decoding/correction/testing

in sublinear or sometimes constant time. For example, a constant query locally de-

codable code (LDC) allows decoding of any message bit in constant time given a

corrupted encoding of the message.

Much of the work in this thesis is to understand the power and limitations of

codes with locality. We show that one can get non-trivial locality and still match

the best known rate-distance tradeoffs of traditional error correcting codes (Gilbert-

Varshamov bound). We prove several conditional lower bounds on codes with locality

and give new directions for constructing such codes by showing an analytic charac-

terization of LDCs.

We also explore applications of such codes to additive combinatorics, information

privacy and data storage. We show how to use ideas from existing constructions

of LDCs to design 2-server private information retrieval schemes where a user can

efficiently and privately query a database replicated among two (non-communicating)

servers without revealing any information about their query to either server. We also

show limits and improved constructions of maximally recoverable local reconstruction

codes which are locally correctable codes designed specifically for distributed data

storage applications.

iii

Acknowledgements

This section was the hardest for me to write. I am indebted to a great many people,

and these few pages wouldn’t be sufficient to express my gratitude to all.

I was extremely fortunate to have Zeev as my advisor and his guidance was valu-

able throughout my PhD. He introduced me to some beautiful questions in coding

theory and gave me lots of freedom to work on whatever interested me. He encouraged

me to be brave and work on important problems, notwithstanding their difficulty. I

was always amazed by the novelty of his ideas. It was an absolute pleasure working

with him. This work is supported by NSF CAREER award 1451191 and NSF grant

CCF-1523816.

I would like to thank Swastik Kopparty, Ran Raz, Avi Wigderson and Mark

Zhandry for agreeing to be on my committee despite their busy schedules. I would be

remiss if I did not thank my collaborators Arnab Bhattacharyya, Jop Briët, Venkate-

san Guruswami, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, Shubhangi Saraf,

Avishay Tal and Sergey Yekhanin from whom I have learnt a lot and who contributed

to the results in this thesis.

I want to convey my special thanks to Sergey for being an excellent mentor during

my internship at Microsoft Research Redmond in the Fall of 2016 and again for hosting

me in the summer of 2017 for a few weeks. During this time, I had the wonderful

opportunity to collaborate with Venkatesan Guruswami and I am grateful for the

guidance and support they gave me.

The theory community at Princeton has been a great source of inspiration for me.

The courses I attended here by Sanjeev Arora, Manjul Bhargava, Mark Braverman,

Assaf Naor and Ran Raz have influenced my thinking greatly. Avi Wigderson and the

CSDM seminar at IAS have also been instrumental in creating a great atmosphere at

Princeton for theoretical computer science.

iv

During my the course of my PhD at Princeton, I have had several friends and

colleagues who have been a constant support and made my life here so much more

enjoyable. This is a shout out to all of them, particularly Eshan Chattopadhyay, Ankit

Garg, Sumegha Garg, Suryateja Gavva, Sravya Jangareddy, Siddhartha Jayanti,

Young Kun Ko, Shujing Liu, Jieming Mao, Yonatan Naamad, Huy Le Nguyen, An-

drej Risteski and Omri Weinstein. I want to specially thank my roommates Naman

Agarwal, Rafael Oliveira and Jon Schneider for making my stay at Princeton so much

more fun.

I thank all my teachers from school and college who were instrumental in shaping

my interests and thinking. I would like to thank the professors of my undergradu-

ate college IIT Bombay and specifically my undergraduate thesis advisors Prahladh

Harsha and Srikanth Srinivasan who inspired me to work in theoretical computer

science. I owe a lot to my school in Kakinada where I started to develop an interest

in mathematics and sciences; the time I spent solving challenging high school math

problems was as exciting as any research problem that I later worked on. I want to

thank a few teachers from my schooling specifically who have greatly contributed to

my learning: Ashwath Rao, Babji, Ramakrishna, Shivakumar, Solomon, Subrama-

nian GN and Suman. The friends I made over all these years have influenced me in

many ways and I am thankful for all of them. My family has been a constant source

of love and support for me, and my greatest strength; the time I spend with them is

one of the happiest times for me. My parents always encouraged scientific curiosity

ever since we were kids. I want to specially thank my elder brother Srikanth who has

always been there for me ever since I was a kid, I still remember him trying hard to

teach me Pythagoras theorem when I was 12. I am extremely fortunate to have a

great family, teachers and friends who made me what I am today. It is to them that

I dedicate my thesis.

v

To my family, teachers and friends

vi

asto mA s�my।

Asatō mā sadgamaya

tmso mA >yoEtg
my।

tamasō mā jyōtirgamaya

- Br
◦
hadāran. yaka Upanis.ad (900 - 600 BCE)

From untruth lead me to truth

From darkness lead me to light

vii

Contents

Abstract . iii

Acknowledgements . iv

1 Introduction 1

1.1 Codes with locality . 2

1.1.1 History and applications of local codes 4

1.1.2 What is the cost of locality? 6

1.2 Summary of contributions . 7

1.3 Future directions . 10

2 Preliminaries 13

2.1 Notation . 13

2.2 Error Correcting Codes . 13

2.3 Locally Decodable Codes (LDCs) . 15

2.3.1 Smoothness . 17

2.3.2 An average-case to worst-case reduction 18

2.3.3 Constructions for LDCs . 22

2.3.4 Lower bounds for constant query LDCs 23

2.3.5 Exponential lower bound for two query LDCs 23

2.3.6 Lower bounds for q-query LDCs? 29

2.4 Locally Correctable Codes (LCCs) . 31

viii

2.4.1 LDCs from LCCs . 32

2.4.2 Constructions for LCCs . 34

2.4.3 Lower bounds for LCCs . 36

2.5 Locally Testable Codes (LTCs) . 36

2.5.1 Constructions and lower bounds for LTCs 37

2.6 Results and structure of this thesis 38

3 Private Information Retrieval 45

3.1 Introduction . 45

3.1.1 Main Results . 47

3.1.2 Proof Overview . 48

3.1.3 Organization . 50

3.2 LDCs and PIR . 51

3.2.1 Lower bounds for PIR . 52

3.3 Preliminaries . 53

3.3.1 The rings Rm,r . 53

3.3.2 Matrices over Commutative Rings 54

3.3.3 Matching Vector Families . 55

3.4 Review of O(n1/3) cost 2-server PIR 56

3.5 The new 2-server scheme: Proof of Theorem 3.1.2 58

3.5.1 Working over Z6 or F3 . 62

3.6 An Alternative Construction . 62

3.7 Generalization to more servers: Proof of Theorem 3.1.3 64

3.7.1 Proof of Lemma 3.7.1 . 67

3.8 Concluding remarks . 70

3.9 Subsequent work . 71

ix

4 Locality near Gilbert-Varshamov bound 72

4.1 Introduction . 72

4.1.1 Methods . 75

4.1.2 Further remarks . 78

4.1.3 Organization of this paper . 79

4.2 Preliminaries . 80

4.2.1 Error-correcting codes . 80

4.2.2 Locally list decodable and list recoverable codes. 82

4.3 LTCs approaching the GV bound . 85

4.3.1 Approaching the GV bound via random concatenation 86

4.3.2 LTCs approaching the GV bound 89

4.4 Approaching the GV bound via random concatenation, again 91

4.5 LCCs approaching the GV bound . 95

4.5.1 Proof overview and main ingredients 96

4.5.2 Construction of C ′ . 100

4.5.3 Rate and relative distance of C ′ 103

4.5.4 Local list decoding of C ′ . 104

4.5.5 Local correction of C ′ . 106

4.6 Local list recovery of Reed-Muller codes 108

4.6.1 Proof of Lemma 4.5.3 . 109

4.6.2 Tolerant local testing of Reed-Muller codes - Proof of Lemma

4.6.3 . 115

4.7 Distance amplification for local list recovery 116

4.8 Johnson Bound for List Recovery . 125

5 LDCs from Outlaw distributions 129

5.1 Introduction . 129

5.1.1 LDCs from distributions over smooth Boolean functions . . . 129
x

5.1.2 Techniques . 133

5.1.3 Organization . 135

5.2 Preliminaries . 136

5.2.1 Fourier analysis on the Boolean cube 136

5.3 From outlaws to average-case smooth codes 137

5.4 From LDCs to outlaws . 140

5.5 Candidate outlaws . 142

5.5.1 Incidence geometry . 142

5.5.2 Hypergraph pseudorandomness 147

6 Lower bounds for affine invariant local codes 152

6.1 Introduction . 152

6.1.1 Related Work . 154

6.1.2 Proof Overview . 155

6.2 Preliminaries . 157

6.2.1 Error-correcting codes and affine invariance 157

6.2.2 Higher order Fourier analysis 158

6.2.3 A net for Gowers norm . 161

6.3 Locally Correctable Codes . 164

6.4 Locally Testable Codes . 169

6.5 Proof of generalized von Neumann inequality (Lemma 6.2.5) 174

6.6 Conclusions . 176

7 Lower bounds for 2-query LCCs 178

7.1 Introduction . 178

7.1.1 Discussion of Main Result . 180

7.1.2 Proof Overview . 181

7.2 Matching lemma for zero-error LCCs 184

xi

7.3 Proof of lower bound . 187

7.3.1 An information theoretic lemma 187

7.3.2 Proof of Theorem 7.1.2 . 189

7.3.3 Proof of Claim 7.3.3 . 192

8 Applications to additive combinatorics 198

8.1 Introduction . 198

8.1.1 Random differences in Szemerédi’s Theorem 200

8.1.2 Large deviations for arithmetic progressions 201

8.1.3 Relation to LDCs . 204

8.1.4 Gaussian width bounds from type constants 204

8.2 Proof of Theorem 8.1.1 . 206

8.3 Proof of the matrix lemma . 211

8.4 Proof of the generalized birthday paradox. 215

8.5 Random differences in Szemerédi’s Theorem 217

8.6 Upper tails for arithmetic progressions in random sets 221

8.7 Proof of Lemma 8.1.5 . 223

9 Local codes for distributed storage 225

9.1 Introduction . 225

9.1.1 State of the art and our results 227

9.1.2 Our techniques . 231

9.1.3 Related work . 232

9.1.4 Organization . 234

9.2 Preliminaries . 234

9.3 The lower bound . 236

9.3.1 Lower bound when g ≥ h . 237

9.3.2 Lower bound when g ≤ h . 243

xii

9.4 Maximally recoverable LRCs with h = 2 244

9.5 Maximally recoverable LRCs with h = 3 247

9.6 Maximally recoverable LRCs from elliptic curves 252

9.6.1 LRCs from matching collinear triples 252

9.6.2 Matching Collinear Triples from AP free sets 256

9.7 Open problems . 260

9.8 Proof of Proposition 9.3.7 . 261

9.9 Determinantal identities . 268

9.10 Proof of Lemma 9.4.3 . 271

Bibliography 276

xiii

Chapter 1

Introduction

Coding theory is the study of error correcting codes(ECCs) which help us build sys-

tems which are resilient to noise and corruptions. They are the reason why we can

communicate through noisy channels, why we can store data reliably in faulty stor-

age systems and why quantum computation is even feasible. ECCs were formally

introduced in the pioneering work of Shannon [Sha48], who showed the existence of

optimal (capacity-achieving) ECCs using the probabilistic method. The problem of

constructing explicit and efficient codes has fueled the development of coding theory

ever since.

An error correcting code encodes messages into longer strings called codewords

so that given a corrupted codeword one can correct the corruptions and decode the

encoded message. In many applications, it is enough to correct only one symbol

of the corrupted codeword or to decode only one symbol of the message (or a tiny

part). In such applications, it is desirable that these tasks are done extremely fast,

sublinear or perhaps even in constant time; for example in distributed storage, to

recover a single crashed server, we shouldn’t be reading all the rest of the servers.

This means that we are only allowed to read a tiny part of the corrupted codeword,

this is referred to as “locality”. The number of coordinates we are allowed to read1 is
1They can be chosen using a randomized procedure

1

called query complexity. Studying codes with such local procedures has turned out to

be an extremely useful and productive area of coding theory. They have applications

in distributed storage, probabilistically checkable proofs (PCPs), program checking,

private information retrieval, hardness amplification, cryptography etc.. The main

question for local codes is to understand the best possible rate (i.e. what’s smallest

codeword length for a given message length) for a given query complexity. But unfor-

tunately, we are still very far from understanding such codes. They will the be main

focus of this thesis.

1.1 Codes with locality

A locally decodable code (LDC) is an error correcting code which allows for ultra fast

decoding of a single message symbol by reading only a tiny part of the corrupted

codeword. A locally correctable code (LCC) has a stronger property, it allows for ultra

fast correction of any codeword symbol by reading only a tiny part of the corrupted

codeword. The local decoding and local corrections algorithms work well only when

there are not too many corruptions, otherwise they behave unpredictably. So some-

times we want to test quickly if a given corrupted codeword has too many corruptions

before we can use the local decoding or correction algorithms. A code which supports

a fast testing algorithm which read only a tiny part a given corrupted codeword is

called a locally testable code (LTC). We will now define them a bit more formally.

An error correcting code is a map C : {0, 1}k → Σn which encodes k-bit message

into codewords of length n over some finite alphabet Σ. Given some string z which

is close enough to some codeword C(x) in Hamming distance (some small constant

fraction of errors), we want to recover the codeword C(x) and thus the message x

which is encoded. There are three natural algorithmic tasks here:

• Correction: Correct the errors in z to get C(x)

2

• Decoding: Decode z to get x

• Testing: Test whether z is actually close to some codeword.

Locally Decodable Code: C is called a q-query LDC if there is a randomized local

decoding algorithm which given some i ∈ [k], reads at most q locations of z (which

can be chosen randomly) and outputs xi with good probability.

Locally Correctable Code: C is called a q-query LCC if there is a randomized local

correction algorithm which given some i ∈ [n], reads at most q locations of z and

outputs C(x)i with good probability.

Locally Testable Code: C is called a q-query LTC if there is a randomized local testing

algorithm which reads at most q locations of z and accepts if there are no corruptions,

and rejects with good probability if there are too many corruptions.

LDCs are weaker than LCCs, in the sense that any LCC can be converted into an

LDC while preserving relevant parameters (see Section 2.4.1 for a formal statement

and proof).

An example - Hadamard Code To get familiar with the definitions, let us look

at the example of Hadamard code which is simultaneously a 2-query LDC, 2-query

LCC and 3-query LTC!

The Hadamard code is a exponential length linear code, H : Fk2 → Fn2 where

n = 2k. The codeword coordinates are indexed by y ∈ Fk2 and for a message x ∈ Fk2,

the encoding is given by H(x)y = 〈x, y〉 i.e. the codewords are just evaluations of

linear functions on Fk2. This is a 2-query LCC. Suppose we are given a corrupted

version of a codeword H(x), say H̃(x). To correct the symbol at y ∈ Fn2 , the local

corrector queries H̃(x) at z, z + y for a uniformly random z ∈ Fk2 and computes the

parity of the two bits. If the number of corruptions are small, with good probability

3

both the queries land in the uncorrupted part of H̃(x) , and if that’s the case,

H̃(x)z + H̃(x)z+y = 〈x, z〉+ 〈x, z + y〉 = 〈x, y〉

which is the correct symbol. Since the message symbols are part of the codeword

(H(x)ei = 〈x, ei〉 = xi), it is also a 2-query LDC.

To test if some given word is close to some codeword is equivalent to testing if a

function f : Fk2 → F2 is linear. To test this, a local tester can sample z, y ∈ Fk2 and

query f at z, y, z + y and accept if

f(z + y) = f(z) + f(y).

This is the famous linearity test of Blum, Luby and Rubinfeld [BLR93]. It clearly

accepts a linear function and it will reject a function which is far from linear with

good probability. Thus H is a 3-query LTC.

1.1.1 History and applications of local codes

The notion of locality has a long history in computer science by now. Also called

“self-correction”, the idea of local correction originated in works by Lipton [Lip90]

and by Blum and Kannan [BK95] on program checkers. In particular, [Lip90, BF90]

used the fact that the Reed-Muller code is locally correctable to show average-case

hardness of the Permanent problem. LDCs were first formally defined in the context of

channel coding in [KT00], although they (and LCCs) implicitly appeared in several

previous works in other settings (in particular, local codes based on multivariate

polynomials), such as probabilistically checkable proofs (PCPs) [AS98, ALM+98],

private information retrieval (PIR) schemes [CGKS98] and proof checking [BFLS91].

Since then, they found many more applications, here is a short list of applications of

LCCs/LDCs where are useful or appear implicitly.
4

• Probabilistically Checkable Proofs (PCPs) [AS98, ALM+98]

• Private information retrieval (PIR) schemes [CGKS98, GKST06, BIW07]

• Hardness amplification [STV01, Vad12]

• Multiparty secure computation [IK04]

• Polynomial identity testing (PIT) [DS07]

• Matrix rigidity [Dvi11]

• Time-space tradeoffs for Nearest Neighbor search [ALRW17]

• Secret sharing [LVW17, LVW18]

• Banach space geometry [BNR12]

• Additive combinatorics [BDG17, BG17b]

• Quantum complexity theory [Aar18]

The analysis of LDCs and LCCs has led to a greater understanding of basic prob-

lems in incidence geometry, the construction of design matrices and the theory of

matrix scaling, e.g. [BDYW11, DSW14b, DSW14a]. LDC-inspired objects called

local reconstruction codes found applications in fault tolerant distributed storage

systems [GHSY12]. See [Yek12] for a survey on LDCs, LCCs and some of their ap-

plications. Also see the survey [Vad12] for applications of coding theory and locality

to pseudorandomness.

Research on LTCs implicitly started with Blum, Luby, and Rubinfeld’s seminal

discovery [BLR93] that the Hadamard code is an LTC with query complexity 3 and

there was lot of work on testing low degree multivariate polynomials [AS03]. LTCs

were first formally defined by Goldreich and Sudan in [GS06a]. They have been

5

used (implicitly and explicitly) in many contexts, most notably in the construction

of PCPs [AS98, ALM+98, Din07].

The idea of local decoding has also been extremely useful in the context of dis-

tributed storage. But in practice, the codes deployed need to be very efficient (rate

close to one) and need local decoding with a constant number of queries, which is

impossible [KT00]. Thus the notion of LDCs is relaxed to the setting where the num-

ber of errors are constant. These codes are called Local Reconstruction Codes (LRCs)

and introduced by Gopalan, Huang, Simitci and Yekhanin [GHSY12]. They are al-

ready being deployed in practice, outperforming traditional codes like Reed-Solomon

codes. Maximally recoverable LRCs achieve the maximal reliability for a given rate

and locality. The main questions about maximally recoverable LRCs is the field size

required to construct them. The performance of encoding and decoding algorithms

in practice is extremely sensitive to the field size.

1.1.2 What is the cost of locality?

Despite their many applications, our knowledge of LDCs/LCCs is very limited; the

best-known constructions are far from what is currently known about their limits.

A random binary linear code achieves the Gilbert-Varshamov bound, the best rate-

distance trade-offs known for binary codes. For many pseudorandom objects like

expanders, extractors etc.., random constructions achieve optimal parameters. But

the situation is very different for local codes. Although standard random (linear)

ECCs do allow for some weak local-decodability, they are outperformed by even the

earliest explicit constructions [KS07]. All the known constructions of LDCs/LCCs

were obtained by explicitly designing such codes using some algebraic objects like

low-degree polynomials or matching vectors [Yek12].

2-query LDCs over the binary alphabet need exponential length [KW04, GKST06]

and the Hadamard code achieves this i.e. they should encode k bits to n = exp(Ω(k))

6

bits. But there is a huge gap between upper and lower bounds for q-query LDCs

for q ≥ 3. The best lower bounds are polynomial [KT00, KW04] (n = kΩq(1)) and

the best upper bounds are sub-exponential [Yek08, Efr09] (n = exp(ko(1))). Even

for 2-query LDCs over large alphabet, there are huge gaps between the best upper

and lower bounds, this is closely related to the communication complexity of private

information retrieval schemes.

Surprisingly, lower bounds on LDCs have found several applications in areas like

Banach space theory [BNR12],time-space tradeoffs for data structures [ALRW17],

additive combinatorics and probability theory [BDG17, BG17b]. This shows that

studying the limitations of locally decodable codes is a very fruitful area of research

and a central problem with connections to several areas of mathematics. Indeed there

are several works which study lower bounds for constant query LDCs/LDCs [KT00,

GKST06, DS07, KW04, BDYW11, BDSS11, Woo12, DSW14a] Yet, the upper and

lower bounds are far apart.

The situation is much better for LTCs. We know the existence of 3-query LTCs

which encode k bits to n = k · polylog(k) bits [BS08, Din07, Vid15]. The main open

question about LTCs is whether there are constant query LTCs with constant rate

and distance. Understanding the cost of locality is one of the central problems in

coding theory.

1.2 Summary of contributions

The following is a brief summary of the main contributions of this thesis. A more

detailed description of results in each chapter and the organization of the thesis is

given in Section 2.6.

7

Locally decodable codes (LDCs) and Locally correctable codes (LCCs)

In Chapter 5, we show an equivalence between LDCs and outlaw distributions2 over

smooth functions showing an interesting connection to probability theory. For this,

we also develop an average-case to worst-case reduction for LDCs (see Section 2.3.2)

i.e. we can convert an LDC which can decode a random coordinate of a random

message into an LDC which has worst-case guarantees.

For constant q, all the known constructions for q-query LCCs come from a class

of codes called affine-invariant codes3 which have a rich set of symmetries that makes

them amenable to local correction. In Chapter 6, using tools from higher order Fourier

analysis (specifically the inverse Gowers theorem [TZ12]), we show that Reed-Muller

codes are optimal q-query LCCs among the class of affine-invariant codes, extend-

ing [BSS11] who showed it for linear affine-invariant codes.

2-query LCCs of small length over a small (but growing) alphabet can also be

used to construct 2-server PIR protocols. In Chapter 7, we show a tight lower bound

on the length of 2-query LCCs4 over growing alphabet, improving [BDSS16]. Our

bounds imply that 2-query LCCs cannot be used to improve current PIR protocols.

Gilbert-Varshamov (GV) bound is the best known rate-distance tradeoff known

for binary error correcting codes. In Chapter 4, we show the existence of codes which

admit local correction and codes with local testing which almost lie on the GV rate-

distance curve. Thus we can match the best rate-distance tradeoffs known for binary

codes and still have non-trivial (sub-linear) locality!

Private information retrieval (PIR) Information privacy is a problem of great

importance as our lives are increasingly getting connected to Internet. Search engines
2These are distributions on functions over a small domain such that, to get close to the true mean

of the distribution in L∞-norm, we need to take the empirical mean of a large number of samples.
The term outlaw is a reference to the Law of Large Numbers.

3These are codes whose coordinates are indexed by a vector space and the set of codewords is
invariant under affine linear transformations of the coordinate space.

4Our bound only holds if the corrector doesn’t make any errors when the codeword is not cor-
rupted.

8

can know more things about you from your search queries than your friends. Private

information retrieval allows a user to retrieve an entry from a remote database of k

entries while not revealing any information about which entry the user wants. To get

information theoretic privacy, the user cannot do better than asking for the entire

database which requires k bits of communication. Surprisingly, one can do much bet-

ter when the database is replicated among two non-communicating servers (2-server

PIR). In Chapter 3, we construct a 2-server PIR scheme with ko(1) bits of communica-

tion improving the O(k1/3)-scheme of [CGKS98] for the first time and overcoming a

barrier result due to Razborov and Yekhanin [RY06]. It is known that good q-query

LDCs imply good q-server PIR schemes in a blackbox way [KT00]. There are no good

2-query LDCs unfortunately, but we show a way to convert subexponential q-query

LDCs from [Yek08, Efr09] for q ≥ 3 in a non-blackbox way into good dq/2e-server PIR

protocols to achieve our result. The best known lower bound on the communication

cost is only 5 log k [WdW05a], so we are still very far! In subsequent work, our new

2-server PIR scheme has found applications in cryptography and lead to improved

schemes for conditional disclosure of secrets and secret sharing [LVW17, LVW18].

Applications to additive combinatorics A subset D ⊂ N is `-intersective if

every dense subset of N contains a non-trivial arithmetic progression of length `.

Szemerédi proved that N is `-intersective for every `. But much smaller sets can

be `-intersective; for example perfect powers {1t, 2t, 3t, · · · }, shifted primes {p + 1 :

p is prime}. It is natural to ask at what density random sets become `-intersective.

In Chapter 8, we use techniques used to prove LDC lower bounds to improve the

bounds on the density of random sets which are `-intersective and some large deviation

estimates on the number of arithmetic progressions in a random set.

Codes for distributed storage In massive data centers, data is stored among

different servers which often crash or fail to respond. To deal with this„ data is en-

9

coded using codes which are resilient to erasures. When one (or a few) server crashes,

we want a fast local correction procedure which reads only a few other servers (like

LCCs), but with rates matching the best traditional codes. Maximally recoverable

local reconstruction codes (MR LRCs) are such a class of codes, which have good local

correction in the typical scenario when a few servers crash, but still protect the data

from a large number of crashes. They have already been deployed by the Windows

Server system with significantly better space and time performance over the tradi-

tional distributed storage systems like RAID which uses Reed-Solomon codes. It is

easy to show the existence of MR LRCs over fields of size exponential in n, the length

of the code. But working over large fields makes encoding and decoding extremely

slow in practice, ideally we need the field size to be linear in n and to have character-

istic 2. Constructing MR LRCs over fields of small size has been a challenging open

problem.

In Chapter 9, we proved the first polynomially growing (in n) lower bounds on the

field size using vertex expansion in point-hyperplane incidence graph. Prior to our

work, no super linear lower bounds were known. We also showed good constructions

in some practically relevant parameter range and some connections to elliptic curves

and arithmetic progression free subsets of integers.

1.3 Future directions

We are still very far from understanding locality in codes. I believe that the tech-

niques developed to study locality in codes will be useful in a wider range of problems

which involve locality like sublinear algorithms, sketching, dynamic data structures,

property testing, PCPs etc.. Local codes also have some surprising connections to

Approximate nearest neighbor search [ALRW17], Banach space theory [BNR12], ad-

10

ditive combinatorics and probability theory [BDG17, BG17b]. I intend to continue

thinking about these questions.

In the heart of our 2-server PIR scheme in Chapter 3 are objects called matching

vector families (MVFs) introduced by Grolmusz [Gro99] for the purpose of construct-

ing explicit pseudorandom objects called Ramsey graphs. Grolmusz’s construction of

MVFs is based on the representation of the OR function by a O(
√
k)-degree poly-

nomial over Z/6Z. Lowering this degree will lead to better MVFs and thus better

PIR schemes, but currently the best lower bound we know on the degree of such a

polynomial is only Ω(log k) [TB98]. There wasn’t much progress on this problem

for a long time much like circuit lower bounds for AC0 circuits with mod 6 gates.

There also seems to be an interesting connection of low-degree representations of OR

function to submodular optimization with modular constraints [NSZ18].

Though exponential lower bounds are known for 2-query LDCs over constant

alphabet, we only know extremely weak lower bounds when the alphabet is growing.

This is closely related to communication cost of 2-server PIR schemes. It has been

shown recently that LDC lower bounds over large alphabet would also lead to progress

on time-space tradeoffs for approximate nearest neighbor search in the cell-probe

model [ALRW17]. This raises an intriguing question whether LDCs can be used to

design non-trivial data structures for approximate nearest neighbor search.

There is an interesting connection between LDCs and type (cotype) constants of

certain Banach spaces formed as injective (projective) tensor products of `p spaces5.

These constants are related to understanding the norm of a randomly signed sum

of k tensors i.e. Eε∈{−1,1}k ||
∑
i εiXi||. Improving these constants would yield tensor

concentration inequalities analogous to matrix concentration inequalities and would

have an amazing range of applications in LDC lower bounds, additive combinatorics,

probability theory and machine learning. Conversely, the techniques used to prove
5For example, in [BNR12], the existence of subexponential 3-query LDCs was shown to imply

the failure of cotype for projective tensor products.

11

LDC lower bounds are often useful to prove such tensor concentration inequalities.

See Section 2.3.6 and Section 8.1.4 for more details.

Coding theory has been great source of problems which are both mathemati-

cally beautiful and have immediate practical applications. Local reconstruction codes

(LRCs) [GHSY12] for distributed storage are a good example. As alternative models

of storage and computation like DNA storage [OAC+17] and quantum computation

are invented, we would need to design codes which would make these systems robust

to noise. I believe coding theory would continue to be a rich source of problems with

both theoretical and practical significance.

12

Chapter 2

Preliminaries

2.1 Notation

We will write A . B or A = O(B) to denote that A ≤ cB for some absolute constant

c > 0 independent of all the parameters involved, A & B or A = Ω(B) is similarly

defined. A subscript containing some parameters is used when the constants depend

only on those parameters and independent of other parameters. For example, A .δ n

or A = Oδ(B) is used to denote that A ≤ c(δ)B for some constant c(δ) > 0 that

depends only on δ but independent of other parameters.

2.2 Error Correcting Codes

Let Σ be some finite alphabet. The relative distance (Hamming distance) between two

strings x, y ∈ Σn is defined as:

distH(x, y) = 1
n

n∑
i=1

1(xi 6= yi)

which is the fraction of coordinates where x, y differ. For S ⊂ Σn, distH(x, S) is

defined as miny∈C distH(x, y).

13

A subset C ⊂ Σn is called an error correcting code with the following associated

parameters:

• Minimum distance: Largest δ such that for every two distinct x, y ∈ C,

distH(x, y) ≥ δ

• Rate: log |C|
n log |Σ|

• Alphabet size: |Σ|

The elements of C are called codewords. The rate is the amount of information that

a codeword contains per bit. The error-correction property of codes comes from the

simple but important observation that there is at most one codeword within distance

δ/2 of any given word w ∈ Σn; finding this codeword given w is the problem of

decoding. Let Γ be some finite alphabet. An injective map C : Γk → Σn is referred

to as an encoding map and the image of the map, C(Γk), is the associated error

correcting code. A string x ∈ Γk is called a message and C(x) is called its encoding.

The distance of a string z ∈ Σn to the code C is denoted by distH(z, C) which is

equal to distH(z, C(Γk)).

Linear Codes If Σ = F for some finite field F and C is a linear subspace of Fn,

then C is called a linear code. Note that in a linear code, the minimum distance is

the smallest weight of a non-zero codeword normalized by n. A linear code can be

represented by an injective linear map C : Fk → Fn such that the code is the image of

the map. A linear code can always be made systematic by a linear change of basis and

permuting the coordinates i.e. the first k coordinates of the encoding can be made

equal to the message.

14

2.3 Locally Decodable Codes (LDCs)

Locally Decodable Codes allow decoding of a individual message coordinates by read-

ing only a small number of coordinates of a corrupted codeword. We will define them

formally here:

Definition 2.3.1 (Locally decodable code (LDC)). Let Σ be some finite alphabet.

For positive integers k, n, q and parameters η, δ > 0, a map C : {0, 1}k → Σn is a

(q, δ, η)-locally decodable code if, for every i ∈ [k], there exists a randomized decoder

(a probabilistic algorithm) Ai such that:

• For every message x ∈ {0, 1}k and y ∈ Σn such that distH(C(x), y) ≤ δ,

Pr[Ai(y) = xi] ≥ Pr[Ai(y) 6= xi] + η. (2.1)

• The decoder Ai queries non-adaptively at most q coordinates of y.

When the parameter η is not mentioned, usually it is assumed that it is some

fixed constant. We can assume that on input y ∈ Σn, the decoder Ai first samples a

q-tuple of coordinates (j1, . . . , jq) from [n] according to a probability distribution Di

depending on i alone and then returns a random bit depending only on i, (j1, . . . , jq)

and the values of yj1 , . . . , yjq . When the message bits are represented by {−1, 1}

instead of {0, 1}, the decoding condition can be expressed alternatively as follows:

E(j1,...,jq)∼Di [xiDi
j1,...,jq

(
yj1 , . . . , yjq

)
] ≥ η

where Di
j1,...,jq : Σq → [−1, 1] are some decoding functions.

We could also define LDCs which encode messages over a larger alphabet, say Γ.

A map C : Γk → Σn is a (q, δ, η)-locally decodable code if the randomized decoder Ai

makes at most q queries and satisfies the following: For every message x ∈ Γk and
15

string y ∈ Σn that differs from the codeword C(x) in at most δn coordinates,

Pr[Ai(y) = xi] ≥ Pr[Ai(y) = γ] + η, (2.2)

for any γ ∈ Γ such that γ 6= xi. Basically this condition enables one to amplify the

successful decoding probability by repeating the decoder and taking plurality vote.

Though we didn’t specify that an LDC should have large minimum distance, it

can be inferred from the local decoding condition.

Lemma 2.3.2. Let C : {0, 1}k → Σn be an (q, δ, η) LDC, then the minimum distance

of C is at least 2δ.

Proof. Let x, y ∈ {0, 1}k be two distinct messages such that there corresponding

codewords are less than 2δ apart in relative distance i.e. distH(C(x), C(y)) < 2δ. Let

z ∈ Σn be the (approximate) midpoint of C(x) and C(y), i.e. z is δ-close to both

C(x) and C(y). Let i ∈ [k] be such that xi 6= yi. By the LDC property,

Pr[xi = Ai(z)] ≥ 1
2 + η

2 ,

Pr[yi = Ai(z)] ≥ 1
2 + η

2 .

This is a contradiction since xi 6= yi. Therefore every two codewords must be at least

2δ apart. �

Adaptive vs Non-adaptive

One can also define adaptive q-query LDCs where the local decoder can make adap-

tive queries i.e. it can query a new location based on what it has seen in previous

locations. But throughout this thesis, we will only consider non-adaptive LDCs. Most

constructions we know are non-adaptive and moreover, any q-query adaptive LDC is

also a
(
(|Σ|q−1)/(|Σ|−1)

)
-query non-adaptive LDC where the non-adaptive decoder

16

just queries all the possible queries that the adaptive decoder can make, see [KT00]

for more discussion on this.

2.3.1 Smoothness

Katz and Trevisan [KT00] observed that LDC decoders must have the property that

they select their queries according to distributions that do not favor any particular

coordinate. The intuition for this is that if they did favor a certain coordinate, then

corrupting that coordinate would cause the decoder to err with too high a probability.

If instead, queries are sampled according to a “smooth” distribution, they will all fall

on uncorrupted coordinates with good probability provided the fraction of corrupted

coordinates δ and query complexity q aren’t too large. Note that, we can always

assume that the marginal distribution of each query is identical. This is because the

decoder can always uniformly permute the queries before making them. The following

definitions allows us to make this intuition precise.

Definition 2.3.3 (Smooth distribution). A distribution D over [n] is called c-smooth

if for every i ∈ [n], PrD[i] ≤ c
n
.

Definition 2.3.4 (Smooth LDC). Let Σ be some finite alphabet. For positive inte-

gers k, n, q and parameters η, c > 0, a map C : {0, 1}k → Σn is a (q, c, η)-smooth code

if, for every i ∈ [k], there exists a randomized decoder Ai such that

1. For every x ∈ {0, 1}k,

Pr
[
xi = Ai

(
C(x)

)]
≥ Pr

[
xi 6= Ai

(
C(x)

)]
+ η. (2.3)

2. The decoder Ai (non-adaptively) queries at most q coordinates of C(x).

3. The distribution of each query that Ai makes is c-smooth (as defined in Defini-

tion 2.3.3).
17

When the parameter η is not explicity mentioned, usually it is assumed to be some

fixed absolute constant. A (q, 1, η)-smooth LDC is called a perfectly smooth LDC. In

a perfectly smooth LDC, the marginal distribution of each query that the decoder

makes is uniform over all the coordinates. The following lemma from [KT00] shows

that LDCs and smooth LDCs are closely related.

Proposition 2.3.5 ([KT00]). If C : {0, 1}k → Σn is a (q, δ, η)-LDC, then C is also

a (q, 1/δ, η)-smooth LDC. Conversely, if C : {0, 1}k → Σn is a (q, c, η)-smooth code,

then C is also a (q, δ, η − 2qcδ)-LDC.

2.3.2 An average-case to worst-case reduction

In this section, we will prove an average-case to worst-case reduction for smooth LDCs

i.e. smooth LDCs that are only required to work on average (for a random message,

to decode a random bit) can be turned into smooth LDCs that can decode every bit

of every message, losing only a constant factor in the rate and success probability.

Definition 2.3.6 (Average-case smooth code). A code as in Definition 2.3.4 is a

(q, c, η)-average-case smooth code if instead of the first item, (2.3) is required to hold

only on average over uniformly distributed x ∈ {0, 1}k and uniformly distributed i ∈

[k], which is to say that

Pr
[
xi = Ai

(
C(x)

)]
≥ Pr

[
xi 6= Ai

(
C(x)

)]
+ η,

where the probability is taken over x, i and the randomness used by Ai.

The following theorem is from [BDG17] where we used it construct LDCs from

outlaw distributions.

Theorem 2.3.7 ([BDG17]). Let C : {0, 1}k → {0, 1}n be a (q, c, η)-average-case

smooth code. Then, there exists an (q, c,Ω(η))-smooth LDC sending {0, 1}` to {0, 1}n

18

where

` & η2k/ log(1/η).

The idea behind the proof of Theorem 2.3.7 is as follows. We first switch the

message and codeword alphabets to {−1, 1} and let fi : {−1, 1}k → [−1, 1] be the

expected decoding function fi(z) = E[Ai(z)]. The properties of C then easily imply

that the set T ⊆ [−1, 1]k given by T = {(f1(z), . . . , fk(z)) : z ∈ {−1, 1}k} has large

Gaussian width, in particular it holds that for a standard k-dimensional Gaussian

vector g, we have E[supt∈T 〈g, t〉] & εk. Next, we employ a powerful result of [MV03]

showing that T contains an l-dimensional hypercube-like structure with edge length

some absolute constant c ∈ (0, 1], for l & k. Roughly speaking, this implies that C

is a smooth code on {−1, 1}l whose decoding probability depends on ε and c. Note

that we can convert the smooth LDC obtained into an LDC using Proposition 2.3.5.

Proof of Theorem 2.3.7

To prove Theorem 2.3.7, we need the notion of the Vapnik–Chervonenkis dimension

(VC-dimension).

Definition 2.3.8 (VC-dimension). For T ⊂ [−1, 1]k and w > 0, vc(T,w) is defined

as the size of the largest subset σ ⊂ [k] such that there exists a shift s ∈ [−1, 1]k

satisfying the following: for every x ∈ {−1, 1}σ, there exists t ∈ T such that for every

i ∈ σ, (ti − si)xi ≥ w/2.

Observe that if T is convex, then vc(T,w) is the maximum dimension of a shifted

hypercube with edge lengths at least w contained in T .

Definition 2.3.9 (Gaussian width). Let g be a k-dimensional standard Gaussian

vector, with independent standard normal distributed entries. The Gaussian width of

a set T ⊆ Rk is defined as

E(T) = Eg[sup
t∈T
〈g, t〉].

19

It is easy to see that a large VC-dimension implies a large Gaussian width. The

following theorem shows the converse: containing a hypercube-like structure is the

only way to have large Gaussian width.

Theorem 2.3.10 ([MV03]). Let T ⊂ [−1, 1]k. Then, the Gaussian width of T is

bounded as

E(T) .
√
k
∫ 1

αE(T)/k

√
vc(T,w) log(1/w)dw

for some absolute constant α > 0.

Finally, we use that fact that, as for LDCs, we can assume that on input y ∈

{0, 1}n, the decoder Ai of a smooth code first samples a set S ⊆ [n] of at most q

coordinates according to a probability distribution that depends on i only and then

returns a random sign depending only on i, S and the values of y at S.

Proof of Theorem 2.3.7. The proof works by showing that the average-case smooth

code property implies that the image of the (average) decoding functions should have

large Gaussian width. We then use Theorem 2.3.10 to find a hypercube like structure

inside the image, which we use to construct a smooth code.

Recall the switch of the message and codeword alphabets to {−1, 1}. For each

i ∈ [k], let fi : {−1, 1}n → [−1, 1] be the expected decoding function fi(z) = E[Ai(z)].

Let g be a standard k-dimensional Gaussian vector and T = {(f1(z), . . . , fk(z)) : z ∈

{−1, 1}n}. By the definition of average-case smooth code we have

ηk ≤ Ex∈{−1,1}k

[
k∑
i=1

xifi(C(x))
]
≤ Ex∈{−1,1}k

[
sup
t∈T
〈x, t〉

]
. Eg

[
sup
t∈T
〈g, t〉

]
.

(See for instance [Tal14a, Lemma 3.2.10] for the last inequality.) By Theorem 2.3.10,

for some constant α > 0, we have

ηk .
√
k
∫ 1

αη

√
vc(T,w) log(1/w)dt ≤

√
k ·
√

vc(T, αη) log(1/αη)

20

where we used the fact that vc(T,w) is decreasing in w. So for τ = αη, we have

vc(T, τ) & η2k/ log(1/η). By the definition of VC-dimension, there exists a subset

σ ⊂ [k] of size |σ| ≥ vc(T, τ) and a shift s ∈ [−1, 1]k such that for every x ∈ {−1, 1}σ

there exists t ∈ T such that (ti − si)xi ≥ τ/2 for every i ∈ σ.

Now we will define the code C ′ : {−1, 1}σ → {−1, 1}n. Given x ∈ {−1, 1}σ, there

exists t(x) ∈ T such that (t(x)i−si)xi ≥ τ/2 for every i ∈ σ. Define C ′(x) ∈ {−1, 1}n

to be one of the preimages of t(x) under f , that is,

(f1(C ′(x)), . . . , fk(C ′(x))) = t(x).

Let Wp denote a {−1, 1}-valued random variable with mean p. The decoding algo-

rithms A′i(y) run Ai(y) internally and give their output as follows:

A′i(y) =


Output W(1−si)/2 if Ai(y) returns 1

Output −W(1+si)/2 if Ai(y) returns − 1

Therefore, for every x ∈ {−1, 1}σ and for every i ∈ σ,

xiE[A′i(C ′(x))] = xiE
[

(1 +Ai(C ′(x)))
2 W(1−si)/2 −

(1−Ai(C ′(x)))
2 W(1+si)/2

]

= xi
2 E [Ai(C ′(x))− si]

= xi
2 (fi(C ′(x))− si)

= xi
2 (t(x)i − si)

≥ τ

4 & η.

Since the probability that A′i(C ′(x)) queries any particular location of C ′(x) is still

at most c/n, it follows that C ′ is a (q, c,Ω(η))-smooth code. �

21

2.3.3 Constructions for LDCs

The earliest constructions of LDCs were the Hadamard code and its higher degree

generalization, Reed-Muller codes. These are also locally correctable codes which is

a stronger notion. We will define these in Section 2.4.2.

Definition 2.3.11 (Hadamard Code). The Hadamard code is the map H : Fk2 → FFk2
2

defined as H(x)y = 〈x, y〉.

The Hadamard code is a (2, 1, 1)-perfectly smooth LDC of length n = 2k. To

decode xi, the local decoder queries H(x) at z, z + ei for a uniformly random z ∈ Fk2

and computes the parity of the two bits. Since

H(x)z +H(x)z+ei = 〈x, z〉+ 〈x, z + ei〉 = xi,

and the marginal distribution of each query is uniform over Fk2, this is a perfectly

smooth 2-query decoder for the Hadamard code.

When q = 3, the best constructions are from a family of codes called matching

vector codes (MVCs).

Theorem 2.3.12 ([Yek08, Efr09]). There exists a (3, 1, 1)-perfectly smooth LDC C :

{0, 1}k → {0, 1}n of length

n ≤ exp
(

exp
(
O(
√

log n log log n)
))

.

Matching vector codes are the best known constructions for any constant q.

Theorem 2.3.13 ([Yek08, Efr09]). There exists a (2r, 1, 1)-perfectly smooth LDC

C : {0, 1}k → {0, 1}n of length

n ≤ exp
(
exp

(
Or((log n log log n)1−1/r)

))
.

22

When q becomes logarithmic in n, Reed-Muller codes attain polynomial length i.e.

there exists (O(log n), 1, 1)-perfectly smooth LDCs of length n = kO(1). Increasing the

queries further, there are no(1)-query LDCs with constant rate i.e. n = O(k) [KSY14,

KMRS17].

2.3.4 Lower bounds for constant query LDCs

In the paper where LDCs were first define [KT00], Katz and Trevisan also showed

that constant query LDCs should stretch the message to super linear length.

Theorem 2.3.14 ([KT00]). Let C : {0, 1}k → Σn be a (q, δ, η)-LDC. Then

n &η,δ,q

(
k

|Σ|

) q
q−1

.

A similar lower bound was shown for adaptive q-query LDCs in [DJK+02]. The

Katz-Trevisan lower bound was signficantly improved for 2-query LDCs where expo-

nential lower bounds were shown [GKST06, KW04] i.e. n ≥ exp(Ωδ,η(n)). By using

a reduction to these exponential lower bounds, the lower bounds for q-query LDCs

for q ≥ 3 were improved as well.

Theorem 2.3.15 ([KW04]). Let C : {0, 1}k → {0, 1}n be a (q, δ, η)-LDC for q ≥ 3.

Then

n &η,δ,q

(
k

log k

)1+ 1
dq/2e−1

.

2.3.5 Exponential lower bound for two query LDCs

Exponential lower bounds are known for the length of 2-query LDCs over finite al-

phabet. Let C : {0, 1}k → Σn be a (2, δ, η)-LDC. It was showin in [GKST06] using

isoperimetric inequalities on the hypercube that if C is a linear code then

n ≥ exp (Ω(δηk/|Σ|)) .
23

This was extended to arbitrary 2-query LDCs by Kerenidis and de Wolf [KW04]

with further improvements in [WdW05a] by using quantum information theory, they

proved that

n ≥ exp
(
Ω(δη2k/|Σ|2)

)
.

Suppose ` = log |Σ| is the number of bits in each symbol of the alphabet, if the

decoder only uses b bits of each queried position then an improved lower bound is

obtained in [WdW05a],

n ≥ exp
Ω

 δη2k

2b∑b
i=0

(
`
b

)
 .

When Σ = {0, 1}, a exponential lower bound using matrix hypercontractive in-

equalities in [BARDW08] avoids the use of quantum information theory. But their

proof gives a worse dependence on δ, η, they prove n ≥ exp (Ω(δ2η4n)). A more

direct proof using matrix concentraiton inequality (Proposition 2.3.18) is found by

Pisier [Pis12]. A proof along these lines can be found in [Bri16] where they prove

n ≥ exp (Ω(δ2η2n)). Here we present a proof which follows the same strategy, but by

a more careful reduction we get the same dependence on δ, η as obtained by the quan-

tum information theory proof in [KW04]. The proof we present here is from [BG18].

The exponential lower bound in [KW04] was recently used in proving data struc-

ture trade-offs in the cell-probe model for two cell probes in [ALRW17]. The linear

dependence on δ in the exponent is crucial for that application.

For the purpose of the lower bound, it is convenient to represent the binary al-

phabet by {−1, 1} instead of {0, 1}.

Theorem 2.3.16. Let C : {−1, 1}k → {−1, 1}n be a (2, δ, η)-LDC, then

n ≥ exp
(
Ω(δη2k)

)
.

24

Dependence on δ, η The optimal dependence on δ, η for linear LDCs is shown

in [Oba02] and given by

n = exp (Θ(δk/(1− η))) .

But for general LDCs, the optimal dependence on δ, η is not known. (2, δ, η)-LDC of

length

n = poly
(

1
δη

)
exp (O(max(δ, η)δn))

are constructed in [Woo08] by modifying Hadamard codes. A matching lower bound

is shown in [Woo08] if the decoder has a particular structure called a ‘matching sum

decoder’ in that paper. The proof of Theorem 2.3.16 only uses a weaker property

of the decoders, that they work well on a random x ∈ {−1, 1}k. Codes with length

n = exp (O(δη2k)), which satisfy this weaker property, can be constructed as follows.

Partition the message of length k into groups of size 1/η2 and replace them with the

majority of those bits to get η2k bits. Now break this η2k bits into 1/δ parts and

encode each part using a Hadamard code.

We will need the following lemma which shows that to work on an average code-

word, the decoders can just sample their queries from a large matching. We will give

a proof of this lemma later.

Lemma 2.3.17. Let C : {−1, 1}k → {−1, 1}n be a (2, δ, η)-LDC, then there exists

local decoders for C as follows:

1. For some partial matchings M1, . . . ,Mk on n vertices of size at least bδnc, the

local decoder for decoding the ith bit samples a random edge from Mi and queries

the vertices of that edge.

2. The decoders can predict xi with η advantage for a uniformly random message

x ∈ {−1, 1}k, i.e.

ExE(j,k)∈Mi

[
xiD

i
jk(C(x)j, C(x)k)

]
≥ η

25

where Di
jk : {−1, 1}2 → [−1, 1] are some fixed decoding functions.

We will also need the notion of spectral norm of a matrix. Let A be an n × n

matrix over the reals. The spectral norm of A denoted by ‖A‖S∞ is defined as:

‖A‖S∞ = sup
x 6=0

‖Ax‖2
‖x‖`2

= sup
x,y 6=0

yTAx

‖y‖`2 ‖x‖`2
.

The spectral norm is also the largest singular value of the matrix A. Let a1, . . . , ak ∈ R

and let x ∈ {−1, 1}k be uniformly random, then

Ex
[∣∣∣∣∣

k∑
i=1

xiai

∣∣∣∣∣
]
≤

√√√√ k∑
i=1

a2
i .

The following proposition is the analogue of this fact for matrices first proved

in [TJ74].

Proposition 2.3.18 (Tomczak-Jaegermann). Let A1, · · · , Ak be n×n matrices over

the reals, then

Ex∈{−1,1}k

∥∥∥∥∥
k∑
i=1

xiAi

∥∥∥∥∥
S∞

 . √log n
(

k∑
i=1
‖Ai‖2

S∞

)1/2

where the expectation is over a uniformly random x ∈ {−1, 1}k.

See [Tro15, Theorem 4.1.1] for the statement above and [Tro15] for more on such

matrix concentration inequalities.

Proof of Theorem 2.3.16. By applying Lemma 2.3.17, we get partial matchings

M1, . . . ,Mk on [n] vertices of size bδnc and decoding functions Di
jk : {−1, 1}2 →

[−1, 1] such that:

ExE(j,k)∈Mi

[
xiD

i
jk(C(x)j, C(x)k)

]
≥ η.

By incurring a constant factor loss in η, we can assume that the decoders just output

the parity of the two bits they have queried or the negation (see [BARDW08] for a
26

details) i.e.

Di
jk(a, b) = sijkab

where sijk ∈ {−1, 1} is such that sijk = sgn(Ex[xiC(x)jC(x)y]). Therefore we have:

E(j,k)∈Mi

[
sijkEx[xiC(x)jC(x)k]

]
& η.

Let t = 1/δ, we define [n]t × [n]t matrices A1, . . . , Ak as follows: Let (j1, . . . , jt) be

some row of Ai. Let ` ∈ [t] be the smallest such that j` participates in matching

Mi. If there is no such `, then that row is set to zero. Let k ∈ [n] be the such that

(j`, k) ∈Mi. Then the row has a single non-zero entry given by:

Ai ((j1, . . . , jt), (k1, . . . , kt)) = sij`,k` where k` = k and k`′ = j`′ for `′ 6= `.

By symmetry each edge of Mi contributes equal number of times to Ai. Since t = 1/δ

and |Mi| = bδnc, a random subset of [n] of size t hits the matching Mi with constant

probability. Therefore a constant fraction of rows of Ai are non-zero. Therefore:

Ex[xi
〈
Ai, C(x)⊗t ⊗ C(x)⊗t

〉
] & ntE(j,k)∈Mi

[
sij,kEx[xiC(x)jC(x)k]

]
& ηnt.

Adding the above inequality for each i ∈ [k], we get

Ex
[〈(

k∑
i=1

xiAi

)
, C(x)⊗t ⊗ C(x)⊗t

〉]
& ηknt.

We can upper bound the LHS of the above inequality as

Ex

[
(C(x)⊗t)T

(
k∑
i=1

xiAi

)
C(x)⊗t

]
≤ Ex

∥∥∥∥∥
k∑
i=1

xiAi

∥∥∥∥∥
S∞

·
∥∥∥C(x)⊗t

∥∥∥2

`2


= nt · Ex

∥∥∥∥∥
n∑
i=1

xiAi

∥∥∥∥∥
S∞

 .
27

Since the matrix Ai is equivalent to a diagonal matrix with {−1, 0, 1} entries after

permuting rows and columns, it is easy to see that ‖Ai‖S∞ ≤ 1. So Lemma 2.3.18

implies that

Ex

∥∥∥∥∥
n∑
i=1

xiAi

∥∥∥∥∥
S∞

 . √log(nt)
√
k =

√
tk log n.

Combining the above inequalities, we get

nt
√
tk log n & ηknt ⇒ n ≥ exp(Ω(η2k/t)) = exp(Ω(δη2k)).

�

Proof of Lemma 2.3.17

To prove the lemma, we need the following proposition which is a generalization of

the Birkhoff-Von Neumann theorem for partial matchings.

Proposition 2.3.19 (Theorem 4.1 in [CC18]). Let s ≤ n be some positive integers.

Let Pn,s be the polytope of doubly substochastic n × n matrices (i.e. matrices with

non-negative entries and whose row and column sums are at most 1), with the sum

of all entries equal to s. The extreme points of Pn,s are incidence matrices of partial

matchings on [n] vertices of size s.

Proof of Lemma 2.3.17. By Proposition 2.3.5, C is also a (2, 1/δ, η)-smooth LDC.

Say A1, . . . ,Ak be smooth decoders for C i.e. the distribution of their queries are

(1/δ)-smooth. For each i ∈ [k], define the n× n matrix Ai as follows:

Ai(j, k) = Pr[Ai queries j, k].

Ai is a non-negative matrix with total sum 1, we can also assume that the diagonal of

Ai is zero. Moreover, because the marginal distributions of the queries that Ai makes

are (1/δ)-smooth, each row and column sum of Ai is at most 1/δn. If we denote the
28

expected output of Ai after querying C(x) at j, k ∈ [n] as Di
jk(C(x)j, C(x)k), then

the decoding condition can be written as:

∀ x ∈ {−1, 1}k,
∑

j,k∈[n]
Ai(j, k) ·

(
xiD

i
jk(C(x)j, C(x)k)

)
≥ η.

By taking average over a uniformly random x ∈ {−1, 1}k, we get:

∑
j,k∈[n]

Ai(j, k) · Ex
[
xiD

i
jk(C(x)j, C(x)k)

]
≥ η.

Since bδncAi is a doubly substochastic matrix with total sum bδnc, by Proposi-

tion 2.3.19, bδncAi can be written as the convex combination of partial matchings of

size bδnc on n vertices i.e.

bδncAi =
∑

|M |=bδnc
λi,MM.

Therefore there exists a partial matching Mi of size bδnc such that

∑
j,k∈[n]

1
bδnc

Mi(j, k) · Ex
[
xiD

i
jk(C(x)j, C(x)k)

]
≥ η.

�

2.3.6 Lower bounds for q-query LDCs?

Here is one way to generalize the approach in Section 2.3.5, to give lower bounds for q-

query LDCs for q ≥ 3. For this, we need the following lemma similar to Lemma 2.3.17

for q ≥ 3, but only gives matchings of size Ωq(ηδn).

Lemma 2.3.20 (See [BARDW08]). Let C : {−1, 1}k → {−1, 1}n be a (q, δ, η)-LDC.

For each i ∈ [k], there exists a set Mi of at least δηn/q2 disjoint tuples, each of at

29

most q elements from [n], and a sign ai,Q ∈ {−1, 1} for each Q ∈Mi, such that

Ex∈{−1,1}k

ai,Qxi ∏
j∈Q
C(x)j

 ≥ η

2q

where the expectation is over a uniformly random x ∈ {−1, 1}k.

Given a q-multilinear form Λ, we define its norm as:

‖Λ‖ = sup
{

Λ(x1, · · · , xq) : ‖x1‖`q ≤ 1, · · · , ‖xq‖`q ≤ 1
}
. (2.4)

Let C : {−1, 1}k → {−1, 1}n be a q-query LDC and let Mi be the matchings

obtained by applying Lemma 2.3.20. For each matching Mi, we can define a q-

multilinear form Λi as:

Λ(x1, · · · , xq) =
∑

(j1,··· ,jq)∈Mi

si,j1,··· ,jq

q∏
i=1

(xi)ji

where si,j1,··· ,jq ∈ {−1, 1} are the signs obtained in Lemma 2.3.20. So for every

x ∈ {−1, 1}k,

xiΛi(C(x), · · · , C(x)) &ε,δ,q n.

Summing over i ∈ [k] and taking expectation over a uniformly random x ∈ {−1, 1}k,

we have

Ex
[(

k∑
i=1

xiΛi

)
(C(x), · · · , C(x))

]
&ε,δ,q nk.

We can upper bound the LHS as:

Ex
[(

k∑
i=1

xiΛi

)
(C(x), · · · , C(x))

]
≤ Ex

[∥∥∥∥∥
k∑
i=1

xiΛi

∥∥∥∥∥ ‖C(x)‖q`q

]
= n · Ex

[∥∥∥∥∥
k∑
i=1

xiΛi

∥∥∥∥∥
]
.

Therefore we have

Ex
[∥∥∥∥∥

k∑
i=1

xiΛi

∥∥∥∥∥
]
&ε,δ,q k.

30

By applying Hölder’s inequality, we can show that each of the Λi which arise from

matchings have ‖Λi‖ ≤ 1. So if we have a statement analogous to Proposition 2.3.18,

which gives a good upper bound on Ex
[∥∥∥∑k

i=1 xiΛi

∥∥∥], we get good q-query LDC

lower bounds. It can be proved that Ex
[∥∥∥∑k

i=1 xiΛi

∥∥∥] ≤ fq(n)
√
k, which implies

that k ≤ fq(n)2. Proposition 2.3.18 implies that f2(n) .
√

log n. The existence of

subexponential 3-query LDCs [Efr09] implies that f3(n) ≥ exp(
√

log n). Showing that

f3(n) ≤ n1/4−α for some α > 0 implies super quadratic lower bounds for 3-query LDCs

which is currently not known. fq(n) is related to the type constants of the Banach

space on q-multilinear forms with norm as defined in Equation 2.4. See Section 8.1.4

for more information on type-constants.

2.4 Locally Correctable Codes (LCCs)

Locally Correctable Codes (LCCs) are strengthening of LDCs where coordinates of a

corrupted codeword can be corrected locally. Intuitively, a code is said to be locally

correctable [BFLS91, STV01, KT00] if, given a codeword x ∈ C that has been cor-

rupted by some errors, it is possible to decode any coordinate of x by reading only a

small part of the corrupted version of x. Formally, it is defined as follows.

Definition 2.4.1 (Locally correctable code (LCC)). Let Σ be some finite alphabet.

For positive integers n, q and parameters η, δ > 0, a subset C ⊂ Σn is a (q, δ, η)-

locally correctable code if, for every i ∈ [n], there exists a randomized corrector (a

probabilistic algorithm) Ai such that:

• For every codeword x ∈ C and y ∈ Σn such that distH(x, y) ≤ δ,

Pr[Ai(y) = xi] ≥ Pr[Ai(y) = σ] + η, (2.5)

for any σ ∈ Σ such that σ 6= xi.

31

• The decoder Ai queries non-adaptively at most q coordinates of y.

When the parameter η is not mentioned, usually it is assumed to be some fixed

absolute constant. Sometimes LCCs are defined with Equation 2.5 replaced with

Pr[Ai(y) = xi] ≥ 2/3 which is a stronger definition. We can assume that on input y ∈

{0, 1}n, the corrector Ai first samples a set S ⊆ [n] of at most q coordinates according

to a probability distribution depending only on i and then returns a random bit

depending only on i, S and the values of y at S.

We can define (q, c, η)-smooth LCCs and perfectly smooth LCCs in a similar way

as we defined for LDCs. In a (q, c, η)-smooth LCC, the marginal distribution of each

query is c-smooth and in a perfectly smooth LCC, the marginal distribution of each

query is uniform over all coordinates.

Similar to LDCs, LCCs should have large minimum distance as well.

Lemma 2.4.2. Let C ⊂ Σn be an (q, δ, η) LCC, then the minimum distance of C is

at least 2δ.

Proof. Let x, y ∈ C be two distinct codewords such that distH(x, y) < 2δ. Let z be

the midpoint of x and y, i.e. z is δ-close to both x and y. Let i ∈ [n] be such that

xi 6= yi. Since xi 6= yi, by the LCC property,

Pr[xi = Ai(z)] ≥ Pr[yi = Ai(z)] + η,

Pr[yi = Ai(z)] ≥ Pr[xi = Ai(z)] + η,

which is a contradiction. Therefore every two codewords must be at least 2δ apart. �

2.4.1 LDCs from LCCs

Locally correctability is a stronger notion than local decodability. For example if we

have a linear LCC, by change of basis and permuting the coordinates one can make
32

the code systematic and thus we get local decodability of message coordinates. So

every linear LCC is also a linear LDC with the same parameters. We will show that

any (possibly non-linear) q-query LCCs can be converted into q-query LDCs with

only a constant loss in rate and preserving other parameters.

We will need the notion of VC-dimension for the reduction.

Definition 2.4.3. Let A ⊆ {0, 1}n, then the VC-dimension of A, denoted by vc(A)

is the cardinality of the largest set I ⊆ [n] which is shattered by A i.e. the restriction

of A to I, A|I = {0, 1}I .

The following lemma due to Dudley([Dud78]) says that if a set A ⊆ {0, 1}n has

points that are far apart from each other, then it has large VC-dimension.

Lemma 2.4.4 (Theorem 14.12 in [LT13]). Let A ⊆ {0, 1}n such that for every distinct

x, y ∈ A, ‖x− y‖`2 ≥ ε
√
n. Then

vc(A) ≥ Ω
(

log |A|
log(2/ε)

)
.

We are now ready to prove the reduction from LCCs to LDCs. The following

theorem is from [BGT17].

Theorem 2.4.5. Let C ⊆ Σn be a (q, δ, η)-LCC, then there exists a (q, δ, η)-LDC

C ′ : {0, 1}k → Σn with

k = Ω
(

log |C|
log(1/δ)

)
.

Proof. Wlog let us assume Σ = {0, 1}s. Let C0 : {0, 1}s → {0, 1}t be an error

correcting code with distance δ0 which is some fixed constant. We can extend C0 :

Σn → {0, 1}nt as

C0(z1, · · · , zn) = (C0(z1), · · · , C0(zn)).

By Lemma 2.4.2, every two points in C are 2δ-far in Hamming distance, it is easy to

see that in the concatenated code C1 = C0 ◦ C ⊆ {0, 1}tn every two points are 2δ · δ0

33

far apart in Hamming distance. So every two points in C1 are separated by ε
√
nt

distance in `2 norm where ε =
√

2δδ0. So by Lemma 2.4.4,

vc(C1) ≥ Ω
(

log |C1|
log(2/ε)

)
= Ω

(
log |C|

log(1/δ)

)
.

Therefore there exists a set I ⊆ [nt] of size k = vc(C1) such that C1|I = {0, 1}I .

Now define C ′ : {0, 1}I → Σn as follows: C ′(x) = z where z ∈ C is chosen such that

C0(z)|I = x (if there are many such z, you can choose one arbitrarily). So the image

C ′({0, 1}I) ⊆ C. Now we claim that C ′ is an q-query LDC. Given a word r ∈ Σn which

is δ-close to C ′(x), say we want to decode the ith message coordinate xi. Suppose i

belongs to the jth block of ({0, 1}t)n for some j ∈ [n]. The local decoder of C ′ will

run the local corrector of C to correct the jth coordinate of r and apply C0 to find

the required bit xi. So the local decoder for C ′ makes at most q queries and the

probability that it outputs xi correctly is at least 1/2 + η. �

2.4.2 Constructions for LCCs

Reed-Muller Codes

The best known constructions of constant-query LCCs over constant size alphabet

are Reed-Muller codes.

Definition 2.4.6. (Reed-Muller Codes) Let q be a prime power and 1 ≤ d ≤ q. The

Reed-Muller code of degree d over Fq is the subspace C ⊂ FFmq
q given by evaluations of

degree ≤ d polynomials in Fq[x1, . . . , xm] over all points of Fmq .

Reed-Muller codes of degree d are perfectly smooth (d+ 1)-query LCCs of dimen-

sion

k =
(
n+ d

d

)
= Ωd(md).

34

A smooth decoder for a degree d Reed-Muller code, to decode the value of a degree

≤ d polynomial at z ∈ Fmq , queries the values of the polynomial at d + 1 points of

a random line through z. Since the restriction of a degree ≤ d polynomial to a line

is a univariate polynomial of degree ≤ d, one can recover the value at z from the

values at d + 1 points on the line. See the survey [Yek12] for more discussion on

local correction of Reed-Muller codes. Here we reproduce a table from [Yek12] which

shows the length n of q-query LCCs obtainable from Reed-Muller codes in terms of

the dimension k.

Table 2.1: Local correctability of Reed-Muller codes
q n

q = O(1) exp
(
Oq(k1/(q−1))

)
O(log k log log k) kO(log log k)

(log k)t, t > 1 k1+1/t+o(1)

O(k1/t log k), t ≥ 1 tt+o(t) · k

Constant rate LCCs

As shown in Table 2.4.2, Reed-Muller codes with appropriate parameters give LCCs

with rate ε1/ε which are locally correctable from a constant fraction of errors with

Oε(nε log n) queries. There is a different family of codes called multiplicity codes,

introduced in [KSY14] which do much better. Multiplicity codes are generalizations

of Reed-Muller codes, where the evaluations also include all partial derivatives upto a

certain order. They achieve any rate r ∈ (0, 1) and locally correctable from a constant

fraction of errors (depending on ε, r) with nε queries. Lifted codes from [GKS13]

and codes based on expander graphs from [HOW15] also achieve similar parameters.

The best known family of LCCs with constant rate and low query complexity are

from [KMRS17] which are obtained by starting with multiplicity codes and amplifying

their distance.

35

Theorem 2.4.7 ([KMRS17]). Let r ∈ (0, 1) be some fixed constant. There exists an

infinite family of linear codes {Cn}n such that Cn ⊂ Fn2 is a linear (q(n),Ωr(1), 2/3)-

LCC of rate r where

q(n) = exp
(
O
(√

log n log log n
))

.

2.4.3 Lower bounds for LCCs

Since LCCs are a stronger notion than LDCs, any lower bounds for LDCs also apply

to LCCs. But stronger lower bounds for LCCs are not known in general. In Chapter 7,

we show a much stronger lower bound for zero-error1 2-query LCCs over large alphabet

than possible for 2-query LDCs. The best known lower bounds for 3-query LDCs is

quadratic; in [DSW14a], a super-quadratic lower bound is shown for 3-query LCCs

defined over real numbers.

2.5 Locally Testable Codes (LTCs)

Intuitively, a code is said to be locally testable [FS95, RS96, GS06b] if, given a string

y ∈ Σn, it is possible to determine whether y is a codeword of C, or rather far from

C, by reading only a small part of y. There are two variants of LTCs in the literature,

“weak” LTCs and “strong” LTCs, where the only difference is that weak LTCs are

required to reject only words which are of sufficiently large constant relative distance

from C, while strong LTCs are required to reject any word y not in C with probability

proportional to the relative distance of y from C. We will define the strong LTCs

here and we always mean strong LTCs when we refer to LTCs unless explicitly stated

otherwise.

1Zero-error refers to the assumption that the local corrector will succeed with probability one
if it is given a codeword with no corruptions. This is true for linear LCCs and almost all known
constructions.

36

Definition 2.5.1 (Locally testable code (LTC)). Let Σ be some finite alphabet. For

positive integers k, n, q and δ, ρ > 0, a map C : {0, 1}k → Σn is a (q, δ, ρ)-locally

testable code if, there exists a randomized tester (a probabilistic algorithm) T such

that:

• The minimum distance of the code is at least δ.

• For every message x ∈ {0, 1}k,

Pr[T (C(x)) accepts] = 1. (2.6)

• For every y ∈ Σn,

Pr[T (y) rejects] ≥ ρ · distH(y, C). (2.7)

• The tester T queries non-adaptively at most q coordinates of its input.

We can assume that on input y ∈ {0, 1}n, the tester T first samples a set S ⊆ [n]

of at most q coordinates according to some fixed probability distribution D and then

accepts or rejects depending only on S and the values of y at S. Given an LTC with

ρ < 1
4 , it is possible to amplify ρ up to 1

4 at the cost of increasing the query complexity

by a multiplicative factor of 1/ρ [KMRS17].

2.5.1 Constructions and lower bounds for LTCs

The best known constructions of constant query LTCs have n = k · polylog(k).

Theorem 2.5.2 ([BS08, Din07, Vid15]). There exists some constants q, δ, ρ > 0 and

some constant size field F such that for infinitely many n ∈ N, there exists a linear

code Cn : Fk → Fn which is a (q, δ, ρ)-LTC with n = k · polylog(k).

37

If we want the code to have constant rate, then there are LTCs which require only

(log n)O(log logn) queries.

Theorem 2.5.3 ([KMRS17]). Let r ∈ (0, 1) be some fixed constant. There exists an

infinite family of linear codes {Cn}n such that Cn ⊂ Fn2 is a linear (q(n),Ωr(1), 1/4)-

LTC of rate r where

q(n) = (log n)O(log logn).

It is not known if there are LTCs with constant rate, constant distance and testable

with constant number of queries.

Question 2.5.4. Are there constant rate (q, δ, ρ)-LCCs with q = O(1), δ = Ω(1) and

ρ = Ω(1) i.e. with constant distance, constant rate and testable with constant number

of queries?

2.6 Results and structure of this thesis

The chapters in this thesis are mostly self-contained, all the required prerequisites

are contained in the preliminaries chapter (Chapter 2). This section contains a

short description of the main results of each chapter. For a brief summary of the

contributions of this thesis, see Section 1.2.

Chapter 3 - Private Information Retrieval

A 2-server Private Information Retrieval (PIR) scheme allows a user to retrieve the

ith bit of an n-bit database replicated among two non-communicating servers, while

not revealing any information about i to either server. In this chapter we construct

a 2-server PIR scheme with total communication cost nO
(√

log logn
logn

)
. This improves

over previously known 2-server protocols which all require Ω(n1/3) communication.

Our construction circumvents the n1/3 barrier of [RY06] which holds for the restricted

38

model of bilinear group-based schemes (covering all previous 2-server schemes). The

improvement comes from reducing the number of servers in existing protocols, based

on Matching Vector Codes, from 3 or 4 servers to 2. This is achieved by viewing these

protocols in an algebraic way (using polynomial interpolation) and extending them

using partial derivatives. The results of this chapter are from [DG16].

Chapter 4 - Locality near Gilbert-Varshamov bound

One of the most important open problems in the theory of error-correcting codes is to

determine the tradeoff between the rate R and minimum distance δ of a binary code.

The best known tradeoff is the Gilbert-Varshamov bound, and says that for every

δ ∈ (0, 1/2), there are codes with minimum distance δ and rate R = RGV(δ) > 0

(for a certain simple function RGV(·)). In this chapter we show that the Gilbert-

Varshamov bound can be achieved by codes which support local error-detection and

error-correction algorithms.

Specifically, we show the following results.

1. Local Testing: For all δ ∈ (0, 1/2) and all R < RGV(δ), there exist codes

with length n, rate R and minimum distance δ that are locally testable with

quasipolylog(n) query complexity.

2. Local Correction: For all ε > 0, for all δ < 1/2 sufficiently large, and

all R < (1 − ε)RGV(δ), there exist codes with length n, rate R and minimum

distance δ that are locally correctable from δ
2 − o(1) fraction errors with O(nε)

query complexity.

Furthermore, these codes have an efficient randomized construction, and the local

testing and local correction algorithms can be made to run in time polynomial in

the query complexity. Our results on locally correctable codes also immediately give

locally decodable codes with the same parameters.

39

Our local testing result is obtained by combining Thommesen’s random concate-

nation technique and the best known locally testable codes from [KMRS17]. Our

local correction result, which is significantly more involved, also uses random con-

catenation, along with a number of further ideas: the Guruswami-Sudan-Indyk list

decoding strategy for concatenated codes, Alon-Edmonds-Luby distance amplifica-

tion, and the local list-decodability, local list-recoverability and local testability of

Reed-Muller codes. Curiously, our final local correction algorithms go via local list-

decoding and local testing algorithms; this seems to be the first time local testability

is used in the construction of a locally correctable code. The results of this chapter

are from [GKdO+17].

Chapter 5 - LDCs from Outlaw distributions

Locally decodable codes (LDCs) are error correcting codes that allow for decoding of

a single message bit using a small number of queries to a corrupted encoding. De-

spite decades of study, the optimal trade-off between query complexity and codeword

length is far from understood. In this chapter, we give a new characterization of LDCs

using distributions over Boolean functions whose expectation is hard to approximate

(in L∞ norm) with a small number of samples. We coin the term ‘outlaw distribu-

tions’ for such distributions since they ‘defy’ the Law of Large Numbers. We show

that the existence of outlaw distributions over sufficiently ‘smooth’ functions implies

the existence of constant query LDCs and vice versa. We give several candidates for

outlaw distributions over smooth functions coming from finite field incidence geome-

try, additive combinatorics and from hypergraph (non)expanders. The results of this

chapter are from [BDG17].

40

Chapter 6 - Lower bounds for affine invariant local codes

Affine-invariant codes are codes whose coordinates form a vector space over a finite

field and which are invariant under affine transformations of the coordinate space.

They form a natural, well-studied class of codes; they include popular codes such as

Reed-Muller and Reed-Solomon. A particularly appealing feature of affine-invariant

codes is that they seem well-suited to admit local correctors and testers.

In this chapter, we give lower bounds on the length of locally correctable and

locally testable affine-invariant codes with constant query complexity. We show that if

a code C ⊂ ΣKn is an r-query affine invariant locally correctable code (LCC), where K

is a finite field and Σ is a finite alphabet, then the number of codewords in C is at most

exp(OK,r,|Σ|(nr−1)). Also, we show that if C ⊂ ΣKn is an r-query affine invariant locally

testable code (LTC), then the number of codewords in C is at most exp(OK,r,|Σ|(nr−2)).

The dependence on n in these bounds is tight for constant-query LCCs/LTCs, since

Guo, Kopparty and Sudan [GKS13] construct affine-invariant codes via lifting that

have the same asymptotic tradeoffs. Note that our result holds for non-linear codes,

whereas previously, Ben-Sasson and Sudan [BSS11] assumed linearity to derive similar

results.

Our analysis uses higher-order Fourier analysis. In particular, we show that the

codewords corresponding to an affine-invariant LCC/LTC must be far from each other

with respect to Gowers norm of an appropriate order. This then allows us to bound the

number of codewords, using known decomposition theorems which approximate any

bounded function in terms of a finite number of low-degree non-classical polynomials,

up to a small error in the Gowers norm. The results of this paper are from [BG17a].

Chapter 7 - Lower bounds for 2-query LCCs

A locally correctable code (LCC) is an error correcting code that allows correc-

tion of any arbitrary coordinate of a corrupted codeword by querying only a few

41

coordinates. In this chapter, we show that any 2-query locally correctable code

C : {0, 1}k → Σn that can correct a constant fraction of corrupted symbols must

have n ≥ exp(k/ log |Σ|) under the assumption that the LCC is zero-error. We say

that an LCC is zero-error if there exists a non-adaptive corrector algorithm that suc-

ceeds with probability 1 when the input is an uncorrupted codeword. All known

constructions of LCCs are zero-error.

Our result is tight upto constant factors in the exponent. The only previous lower

bound on the length of 2-query LCCs over large alphabet was Ω((k/ log |Σ|)2) due

to Katz and Trevisan [KT00]. Our bound implies that zero-error LCCs cannot yield

2-server private information retrieval (PIR) schemes with sub-polynomial commu-

nication. Since our results from Chapter 3 construct a 2-server PIR scheme with

sub-polynomial communication based on a zero-error 2-query locally decodable code

(LDC), we also obtain a separation between LDCs and LCCs over large alphabet.

The results of this chapter are from [BGT17].

Chapter 8 - Applications to additive combinatorics

In this chapter, we give a few applications of the theory of LDCs to additive combi-

natorics. Specifically, we show how techniques used to prove LDC lower bounds can

be used to prove upper bounds on the Gaussian width of special point sets in Rk.

The point sets are formed by the image of the n-dimensional Boolean hypercube un-

der a mapping ψ : Rn → Rk, where each coordinate is a constant-degree multilinear

polynomial with 0-1 coefficients. We show the following applications of our bounds.

Let [Z/NZ]p be the random subset of Z/NZ containing each element independently

with probability p.

• A set D ⊆ Z/NZ is `-intersective if any dense subset of Z/NZ contains a

proper (` + 1)-term arithmetic progression with common difference in D. Our

main result implies that [Z/NZ]p is `-intersective with probability 1 − o(1)

42

provided p ≥ ω(N−β` logN) for β` = (d(` + 1)/2e)−1. This gives a polynomial

improvement for all ` ≥ 2 of a previous bound due to Frantzikinakis, Lesigne

and Wierdl. This reproves more directly the same improvement which can also

be deduced from the results of Chapter 5 and the lower bounds from [KW04].

• LetXk be the number of k-term arithmetic progressions in [Z/NZ]p and consider

the large deviation rate ρk(δ) = log Pr[Xk ≥ (1 + δ)EXk]. We give quadratic

improvements of the best-known range of p for which a highly precise estimate

of ρk(δ) due to Bhattacharya, Ganguly, Shao and Zhao is valid for all odd k ≥ 5.

In particular, the estimate holds if p ≥ ω(N−ck logN) for ck = (6kd(k−1)/2e)−1.

The results of this chapter are from [BG17b].

Chapter 9 - Local codes for distributed storage

The explosion in the volumes of data being stored online has resulted in distributed

storage systems transitioning to erasure coding based schemes. In this chapter, we

will explore codes with local correctors which are tailored for distributed storage

applications called Local Reconstructions Codes (LRCs). The main difference from

LCCs is that these codes only need to locally correct in the presence of a constant

number of errors (instead of constant fraction) which is the typical scenario in practice.

An (n, r, h, a, q)-LRC is a linear code over Fq of length n, whose codeword symbols

are partitioned into g = n/r local groups each of size r. Each local group has

a local parity checks that allow recovery of up to a erasures within the group by

reading the unerased symbols in the group. There are a further h “heavy” parity

checks to provide fault tolerance from more global erasure patterns. Such an LRC is

Maximally Recoverable (MR), if it corrects all erasure patterns which are information-

theoretically correctable under the stipulated structure of local and global parity

checks, namely patterns with up to a erasures in each local group and an additional

h (or fewer) erasures anywhere in the codeword.
43

The efficiency of the encoding and decoding procedures is extremely sensitive to

the field size and thus obtaining MR LRCs over finite fields of minimal size is crucial

in practice and has been the goal of a line of work in coding theory. The existing

constructions require fields of size nΩ(h) while no superlinear lower bounds were known

for any setting of parameters. Is it possible to get linear field size similar to the related

MDS codes (e.g. Reed-Solomon codes)? In this chapter, we answer this question by

showing superlinear lower bounds on the field size of MR LRCs. In particular, we

show that when a and h are constant and r may grow with n, for every MR LRC

with g = n/r local groups,

q ≥ Ωa,h (n · rα) where α = min {a, h− 2dh/ge}
dh/ge

.

MR LRCs deployed in practice have a small number of global parities, typically

h = 2, 3 [HSX+12]. We complement our lower bounds by giving constructions with

small field size for h ≤ 3. When h = 2, we give a linear field size construction, whereas

previous constructions required quadratic field size in some parameter ranges. Note

that our lower bound is superlinear only if h ≥ 3. When h = 3, we give a construction

with O(n3) field size, whereas previous constructions needed nΘ(a) field size. Our

construction for h = 2 makes the choices r = 3, a = 1, h = 3 the next smallest setting

to investigate regarding the existence of MR LRCs over fields of near-linear size. We

answer this question in the positive via a novel approach based on elliptic curves and

arithmetic progression free sets. The results of this chapter are from [GGY17].

44

Chapter 3

Private Information Retrieval

3.1 Introduction

Private Information Retrieval (PIR) was first introduced by Chor, Goldreich, Kushile-

vitz and Sudan [CGKS98]. In a k-server PIR scheme, a user can retrieve the ith bit

ai of an n-bit database a = (a1, · · · , an) ∈ {0, 1}n replicated among k servers (which

do not communicate) while giving no information about i to any server. The goal is

to design PIR schemes that minimize the communication cost defined as the worst

case number of bits transferred between the user and the servers in the protocol. The

trivial solution which works even with one server is to make a server send the entire

database a to the user, which has communication cost n.

When k = 1 the trivial solution cannot be improved [CGKS98]. But when

k ≥ 2, the communication cost can be brought down significantly. In [CGKS98],

a 2-server PIR scheme with communication cost O(n1/3) and a k-server PIR scheme

with cost O
(
k2 log(k) · n1/k

)
were presented. The k-server PIR schemes were im-

proved further in subsequent papers [Amb97, BI01, BIKR02]. In [BIKR02], a k-

server PIR scheme with cost nO(log log k
k log k) was obtained. Then, in a breakthrough result

of Yekhanin [Yek08], the first 3-server scheme with sub-polynomial communication

45

was given (assuming a number theoretic conjecture). Yekhanin’s construction was

cast in a nice framework using homomorphisms in [Rag07] which was used by Efre-

menko [Efr09] to give an unconditional k-server PIR scheme with sub-polynomial

cost for k ≥ 3. These were slightly improved in [IS10, CFL+13]. These new PIR

schemes follow from the constructions of constant query smooth Locally Decodable

Codes (LDCs) of sub-exponential length called Matching Vector Codes (MVCs). A k-

query LDC [KT00] is an error correcting code which allows the receiver of a corrupted

encoding of a message to recover the ith bit of the message using only k (random)

queries. In a smooth LDC, each query of the reconstruction algorithm is uniformly

distributed among the code word symbols. Given a k-query smooth LDC, one can

construct a k-server PIR scheme by letting each server simulate one of the queries.

For more information on the relation between PIR and LDC we refer to the survey

[Yek12].

Despite the advances in 3-server PIR schemes, the 2-server PIR case remained

stuck at O(n1/3) communication. An explanation to the apparent n1/3 barrier for

2-server PIR was given by [RY06] who proved an Ω(n1/3) lower bound for a restricted

model of 2-server PIR called bilinear group based PIR which contains all the previously

known constructions. This is in stark contrast to the best known 5 log n lower bound

for general PIR schemes [WdW05a]. We elaborate more on the relation between this

model and our construction after we present our results below.

PIR is extensively studied and there are several variants of PIR in literature. The

most important variant with cryptographic applications is called Computationally

Private Information Retrieval (CPIR). In CPIR, the privacy guarantee is based on

computational hardness of certain functions i.e. a computationally bounded server

cannot gain any information about the user’s query. In this case, non-trivial schemes

exist even in the case of one server under some cryptographic hardness assumptions.

For more information on these variants of PIR see [Gas04, OSI07]. In this paper, we

46

are only concerned with information theoretic privacy i.e. even a computationally

unbounded server cannot gain any information about the user’s query which is the

strongest form of privacy.

3.1.1 Main Results

We start with a formal definition of a 2-server PIR scheme. A 2-server PIR scheme

involves two servers S1 and S2 and a user U . A database a = (a1, · · · , an) ∈ {0, 1}n

is replicated between the servers S1 and S2. We assume that the servers cannot

communicate with each other. The user U wants to retrieve the ith bit of the database

ai without revealing any information about i to either server. The following definition

is from [CGKS98]:

Definition 3.1.1. A 2-server PIR protocol is a triplet of algorithms P = (Q,A,R).

At the beginning of the protocol, the user U obtains a uniformly random string r. Next,

U invokes Q(i, r) to generate a pair of queries (q1,q2). U sends q1 to S1 and q2 to

S2. Each server Sj responds with an answer ansj = A(j, a,qj). Finally, U computes

its output by applying the recovery algorithm R(ans1, ans2, i, r). The protocol should

satisfy the following conditions:

• Correctness: For any n, a ∈ {0, 1}n and i ∈ [n], the user outputs the correct

value of ai with probability 1 (where the probability is over random strings r)

i.e. R(ans1, ans2, i, r) = ai.

• Privacy: Each server learns no information about i. That is, for any fixed

database a and for j = 1, 2, the distributions of qj(i1, r) and qj(i2, r) are iden-

tical for all i1, i2 ∈ [n] when r is randomly chosen.

The communication cost of the protocol is the total number of bits exchanged between

the user and the servers in the worst case.

47

k-server PIR is similarly defined, with the database replicated among k servers

which cannot communicate between themselves. We only defined 1-round PIR i.e.

there is only one round of interaction between the user and the servers. All known

constructions of PIR schemes are 1-round and it is an interesting open problem to

find if interaction helps. We now state our main theorem:

Theorem 3.1.2. There exists a 2-server PIR scheme with communication cost

n
O

(√
log logn

logn

)
.

In [Efr09] a 2r-server PIR scheme was given with nO((log logn/logn)1−1/r) communi-

cation cost for any r ≥ 2. Using our techniques, we can reduce the number of servers

in this scheme by a factor of two. That is, we prove the following stronger form of

Theorem 3.1.2.

Theorem 3.1.3. For any r ≥ 2, there exists a 2r−1-server PIR scheme with commu-

nication cost nO((log logn/logn)1−1/r).

Other than the dramatic improvement for the 2-server case, Theorem 3.1.3 also

gives a more modest improvement over known results in some range of the parameters.

The 2r query complexity of Matching Vector Codes in [Efr09] was reduced to 9 · 2r−4

for r ≥ 6 in [IS10] while keeping the encoding length the same. This was improved

in [CFL+13] to 3dr/2e for 2 ≤ r ≤ 103 and (3
4)51 · 2r for r ≥ 104. Using these LDCs

directly to get a PIR scheme is better than our scheme when the number of servers

is more than 26, whereas our scheme is better than these when the number of servers

are less than 9.

3.1.2 Proof Overview

On a very high level, the new protocol combines the existing 2-server scheme of

[WY05], which uses polynomial interpolation using derivatives, with Matching Vector

Codes (MV Codes) [Yek08, Efr09]. In particular, we make use of the view of MV
48

codes as polynomial codes, developed in [DGY10]. This short overview is meant as

a guide to the ideas in the construction (a detailed description will follow in the

next sections). The 2-server scheme of [WY05] works by embedding the database

a = (a1, . . . , an) as evaluations of a degree 3 polynomial F (x1, . . . , xk) at n points

P1, . . . , Pn ∈ Fkq , with k ∼ n1/3 and Fq a finite field. To recover the value ai = F (Pi)

the user passes a random line through the point Pi, picks two random points Q1, Q2

on that line and sends the point Qj to the jth server. Each server responds with the

value of F at Qj and the values of all partial derivatives ∂F/∂x`, ` = 1, . . . , k at that

point. The restriction of F to the line is a univariate degree 3 polynomial and the

user can recover the values of this polynomial at two points as well as the value of its

derivative at these points. These four values (two evaluations plus two derivatives)

are enough to recover the polynomial and so its value at Pi. The user can compute

the derivatives of the restricted polynomial from the partial derivatives of F (knowing

the line equation) using the chain rule. The protocol is private since each query Qj

is uniformly distributed in Fkq and so independent of i.

We now describe the PIR schemes of [Yek08, Efr09] which are based on MV

families. An MV family is a pair of lists U = (u1, . . . ,un), V = (v1, . . . ,vn) with

each list element ui and vj belonging to Zkm and m is a small integer. These lists

must satisfy the condition that 〈ui,vj〉 (taken mod m) is zero iff i = j. When m is

a composite, say m = 6, one can construct such families of vectors of size n = kω(1)

[Gro99] (this is impossible if m is prime). From such a family we can construct an

m-server PIR scheme as follows: given a message a = (a1, . . . , an) ∈ {0, 1}n define

the polynomial F (x1, . . . , xk) = ∑n
i=1 aixui (we denote xc = xc1

1 . . . xckk). We think

of F as a polynomial with coefficients in some finite field Fq containing an element

γ ∈ Fq of order m.

To recover ai the user picks a random z ∈ Zkm and considers the restriction of F

to the ‘multiplicative line’ given by L = {γz+tvi | t ∈ Zm}, where γc = (γc1 , . . . , γck)

49

for all c ∈ Zkm. That is, we denote G(t) = F (γz+tvi). In [DGY10] it was observed

that this restriction can be seen as a polynomial g(T) of degree at most m − 1 in

the new ‘variable’ T = γt and so can be reconstructed from the m values on the

line g(γt) = G(t), t = 0, 1, . . . ,m− 1. The final observation is that g(0) is a nonzero

multiple of ai (since the only contribution to the free coefficient comes from the

monomial aixui) and so we can recover it if we know g(T). Hence, the user can recover

ai by asking the t’th (t = 0, 1, . . . ,m−1) server for the value G(t) = F (γz+tvi), which

requires sending the uniformly random point z+tvi to the server. The communication

cost is O(k) = no(1) due to the super polynomial size of the MV family.

Our protocol extends the MV based protocol by asking each server for the evalu-

ations of F at a point, as well as the values of a certain differential operator (similar

to first order derivatives). For this to work we need two ingredients. The first is to

replace the field Fq with a certain ring which has characteristic m and an element of

order m (we only use m = 6 and can take the polynomial ring Zm[γ]/(γ6 − 1)). The

second is an observation that, in known MV families constructions [Gro99], the inner

products 〈ui,vj〉 that are nonzero (that is, when i 6= j) can be made to fall in a small

set. More precisely, over Z6, the inner products are either zero or in the set {1, 3, 4}.

This means that the restricted polynomial only has nonzero coefficients corresponding

to powers of T coming from the set {0, 1, 3, 4}. Such a polynomial has four degrees

of freedom and can be recovered from two evaluations and two derivatives (of order

one). We are also able to work with arbitrary MV families by using derivatives up to

second order at two points (which are sufficient to recover a degree 5 polynomial)(see

Appendix 3.7).

3.1.3 Organization

In Section 3.3 we give some preliminary definitions and notations. In Section 3.4,

we review the construction of a 2-server PIR scheme with O(n1/3) communication

50

cost which is based on polynomial interpolation with partial derivatives [WY05]. In

Section 3.5, we present our new 2-server scheme and prove Theorem 3.1.2. The proof

of Theorem 3.1.3 is given in Section 3.7. We conclude in Section 3.8 with some

remarks on future directions.

3.2 LDCs and PIR

There is a very close connection between k-server PIR protocols and k-query LDCs

as observed in [KT00]. Given a (k, 1, 1)-perfectly smooth LDC C : {0, 1}n → ΣN

(see Section 2.3.1 for definition), one can obtain a k-server PIR protocol with query

size logN and answer size log |Σ|. Each server stores the database a as C(a). To

decode ai, the user uses the perfectly smooth decoder Ai to obtain k queries where

the marginal distribution of each query is uniform over [N] and sends a query each to

the k servers. This implies the required privacy. The servers respond with the value

of C(a) at the queried location. Then the user can decode ai with probability 1 from

the values of C(a) at the k queried locations.

Conversely, given a k-server PIR protocol over a database of n bits with query

length t and answer length s, one can obtain a (k, 1,Ω(1))-perfectly smooth LDC

C : {0, 1}n → ΣN where |Σ| = 2s and N = O(k2t). Thus k-server PIR protocols are

essentially k-query LDCs where the alphabet size is comparable to the length of the

code.

Because of this connection, our main theorem (Theorem 3.1.2) can be rephrased

as a construction of a two query LDC as follows:

Theorem 3.2.1. There exists an explicit perfectly smooth two query LDC C :

{0, 1}n → ΣN where

N = |Σ| = exp
(

exp
(
O(
√

log n log log n)
))

.

51

3.2.1 Lower bounds for PIR

Because of the close connection between PIR and LDCs, lower bounds for PIR can

be obtained from 2 query LDC lower bounds in Section 2.3.5. The best lower bounds

on a two query perfectly smooth LDC C : {0, 1}n → ΣN are from [KT00, KW04]:

N ≥
(
n

|Σ|

)2

and N ≥ exp
(
Ω(n/|Σ|2)

)
.

But since in the PIR setting, N ≈ |Σ|, the lower bounds are ineffective. The best

lower bound on the communication cost of PIR protocols is 5 log n from [WDW05b].

Lower bounds for bilinear group-based PIR

In [RY06], an Ω(n1/3) lower bound was shown for a restricted model of 2-server PIR

schemes. This lower bound holds for schemes that are both bilinear and group-based.

Our scheme can be made into a bilinear scheme (see Section 3.5.1) over the field

F3 of three elements (Our scheme can in fact be made linear and using a simple

transformation given in [RY06], any linear scheme can be converted to a bilinear

scheme). However, it does not satisfy the property of being group-based as defined in

[RY06]. Our scheme does satisfy a weaker notion of employing a group-based secret

sharing scheme (another technical term defined in [RY06]). The difference between

these two notions (of being group-based as opposed to employing a group-based secret

sharing scheme) is akin to the difference between LCCs and LDCs (LCCs being the

stronger notion). In group-based PIR, the database is represented by the values of a

function over a subset of a group but the user should be able to recover the value of

that function at every group element. Our scheme encodes the database as a function

over a group and the user will only be able to recover the bits of the database from

the function.

52

3.3 Preliminaries

Notation

We will use bold letters like x,u,v, z etc. to denote vectors. The inner product be-

tween two vectors u = (u1, · · · , uk),v = (v1, · · · , vk) is denoted by 〈u,v〉 = ∑k
i=1 uivi.

For a commutative ring, R we will denote by R[x1, · · · , xk] the ring of polyno-

mials in formal variables x1, . . . , xk with coefficients in R. We will use the no-

tation xz with x = (x1, · · · , xk), z = (z1, · · · , zk) ∈ Zk to denote the monomial∏k
i=1 x

zi
i . So any polynomial F (x) ∈ R[x1, · · · , xk] can be written as F (x) = ∑

z czxz.

Zm = Z/mZ is the ring of integers modulo m. When u ∈ Zkm, xu denotes xũ where

ũ ∈ {0, 1, · · · ,m− 1}k is the unique vector such that u ≡ ũ mod m. Fq denotes the

finite field of size q.

3.3.1 The rings Rm,r

For our construction it will be convenient (although not absolutely necessary, see

Section 3.5.1) to work over a ring which has characteristic 6 and contains an element

of order 6. We now discuss how to construct such a ring in general.

Let m > 1 be an integer and let γ be a formal variable. We denote by

Rm,r = Zm[γ]/(γr − 1)

the ring of univariate polynomials Zm[γ] in γ with coefficients in Zm modulo the

identity γr = 1. More formally, each element f ∈ Rm,r is represented by a degree

≤ r − 1 polynomial f(γ) = ∑r−1
`=0 c`γ

` with coefficients c` ∈ Zm. Addition is done as

in Zm[γ] (coordinate wise modulo m) and multiplication is done over Zm[γ] but using

the identity γr = 1 to reduce higher order monomials to degree ≤ r − 1. It is easy

to see that this reduction is uniquely defined: to obtain the coefficient of γ` we sum

53

all the coefficients of powers of γ that are of the form `+ kr for some integer k ≥ 0.

This implies the following lemma.

Lemma 3.3.1. Let f = ∑r−1
`=0 c`γ

` be an element in Rm,r. Then, f = 0 in the ring

Rm,r iff ci = 0 (in Zm) for all 0 ≤ i ≤ r − 1.

Remark 3.3.2. For any t ∈ {0, 1, · · · , r − 1}, γt is not a zero divisor in the ring

Rm,r. This holds since the coefficients of γt · f(γ) are the same as those of f(γ)

(shifted cyclically t positions).

The rings Rm,r are sometimes denoted by Zm[Cr] and referred to as the group

ring of the cyclic group Cr with coefficients in Zm. See e.g., [KKS13, HH11] for some

recent applications of these rings in cryptography.

3.3.2 Matrices over Commutative Rings

Let R be a commutative ring (with unity). Let M ∈ Rn×n be an n× n matrix with

entries from R. Most of the classical theory of determinants can be derived in this

setting in exactly the same way as over fields. One particularly useful piece of this

theory is the adjugate (or classical adjoint) matrix. For an n× n matrix M ∈ Rn×n

the adjugate matrix is denoted by adj(M) ∈ Rn×n and has the (j, i)-cofactor of A

as its (i, j)th entry (recall that the (i, j)-cofactor is the determinant of the matrix

obtained from M after removing the ith row and jth column multiplied by (−1)i+j).

A basic fact in matrix theory is the following identity.

Lemma 3.3.3 (Theorem 1.7 from [McD84]). Let M ∈ Rn×n with R a commutative

ring with identity. Then M · adj(M) = adj(M) ·M = det(M) · In where In is the

n× n identity matrix.

The way we will use this fact is as follows:

54

Remark 3.3.4. Suppose M ∈ Rn×n has nonzero determinant and let a =

(a1, . . . , an)t ∈ Rn be some column vector where a1 = 0 or a1 = c and c is not

a zero-divisor. Then we can determine the value of a1 (i.e., tell whether its 0 or c)

from the product M · a. The way to do it is to multiply M · a from the left by adj(M)

and to look at the first entry. This will give us det(M) · a1 which is zero iff a1 is

(since det(M) · c is always nonzero).

3.3.3 Matching Vector Families

Definition 3.3.5 (Matching Vector Family). Let S ⊂ Zm \ {0} and let F = (U ,V)

where U = (u1, · · · ,un),V = (v1, · · · ,vn) and ∀i ui,vi ∈ Zkm. Then F is called an

S-matching vector family over Zm of size n and dimension k if ∀ i, j,

〈ui,vj〉


= 0 if i = j

∈ S if i 6= j

If S is omitted, it implies that S = Zm \ {0}.

Theorem 3.3.6 (Theorem 1.4 in [Gro99]). Let m = p1p2 · · · pr where p1, p2 · · · , pr are

distinct primes with r ≥ 2, then there exists an explicitly constructible S-matching

vector family F in Zkm of size n ≥ exp
(
Ω
(

(log k)r
(log log k)r−1

))
where S = {a ∈ Zm : a

mod pi ∈ {0, 1} ∀ i ∈ [r]} \ {0}.

Remark 3.3.7. The size of S in the above theorem is 2r−1 by the Chinese Remainder

Theorem. Thus, there are matching vector families of size super-polynomial in the

dimension of the space with inner products restricted to a set of size 2r = |S ∪ {0}|.

In the special case when p1 = 2, p2 = 3, we have m = 6 and the following corollary:

Corollary 3.3.8. There is an explicitly constructible S-matching vector family F in

Zk6 of size n ≥ exp
(
Ω
(

(log k)2

log log k

))
where S = {1, 3, 4} ⊂ Z6

55

3.4 Review of O(n1/3) cost 2-server PIR

There are several known constructions of 2-server PIR with O(n1/3) communication

cost. We will recall here in detail a particular construction due to [WY05] which uses

polynomial interpolation using derivatives (over a field). In the next section we will

replace the field with a ring and see how to use matching vector families to reduce

the communication cost.

Let a = (a1, · · · , an) be the database, choose k to be smallest integer such that

n ≤
(
k
3

)
. Let Fq be a finite field with q > 3 elements. Let φ : [n] 7→ {0, 1}k ⊂ Fkq be

an embedding of the n coordinates into points in {0, 1}k of Hamming weight 3. Such

an embedding exists since n ≤
(
k
3

)
.

Define F (x1, · · · , xk) = F (x) ∈ Fq[x1, · · · , xk] as

F (x) =
n∑
i=1

ai

 ∏
j:φ(i)j=1

xj



Note that F (x) is a degree 3 polynomial satisfying F (φ(i)) = ai ∀ i ∈ [n]. Fix any

two nonzero field elements t1 6= t2 ∈ Fq \ {0}.

Suppose the user U wants to recover the bit aτ . The protocol is as follows: The user

picks a uniformly random element z ∈ Fkq and sends φ(τ)+ t1z to S1 and φ(τ)+ t2z to

S2. Each server Si then replies with the value of F at the point received F (φ(τ)+ tiz)

as well as the values of the k partial derivatives of F at the same point

∇F (φ(τ) + tiz) =
(
∂F

∂x1
(φ(τ) + tiz), · · · , ∂F

∂xk
(φ(τ) + tiz)

)

56

The partial derivatives here are defined in the same way as for polynomials over the

real numbers.
U : Picks a uniformly random z ∈ Fkq

U → Si : φ(τ) + tiz

Si → U : F (φ(τ) + tiz),∇F (φ(τ) + tiz)

The protocol is private since φ(τ) + tz is uniformly distributed in Fkq for any τ and

t 6= 0. Consider the univariate polynomial

g(t) = F (φ(τ) + tz).

Observe that, by the chain rule,

g′(t) = 〈∇F (φ(τ) + tz), z〉 .

Thus the user can recover the values g(t), g′(t) for t = t1, t2 from the server’s responses.

From this information the user needs to find g(0) = F (φ(τ)) = aτ . Since F is a degree

3 polynomial, g(t) is a univariate degree 3 polynomial, let g(t) = ∑3
`=0 c`t

`. Therefore

we have the following matrix equation:



g(t1)

g′(t1)

g(t2)

g′(t2)


=



1 t1 t21 t31

0 1 2t1 3t21

1 t2 t22 t32

0 1 2t2 3t22





c0

c1

c2

c3


= M



c0

c1

c2

c3



The matrix M has determinant det(M) = (t2− t1)4 and so M is invertible as long

as t1 6= t2. Thus the user can find c0 = g(0) = F (φ(τ)) = aτ by multiplying by the

inverse of M .

57

The communication cost of this protocol is O(k) = O(n1/3) since the user sends

a vector in Fkq to each server and each server sends an element in Fq and a vector in

Fkq to the user.

3.5 The new 2-server scheme: Proof of Theo-

rem 3.1.2

In this section we describe our main construction which proves Theorem 3.1.2. Before

describing the construction we set up some of the required ingredients and notations.

The first ingredient is a matching vector family over Z6 as in Corollary 3.3.8. That

is, we construct an S = {1, 3, 4}- matching vector family F = (U ,V) where U =

(u1, · · · ,un),V = (v1, · · · ,vn) have elements in Zk6. Corollary 3.3.8 tells us that this

can be done with n = exp(Ω(log2 k/ log log k)) or k = exp(O
(√

log n log log n
)
).

We will work with polynomials over the ring

R = R6,6 = Z6[γ]/(γ6 − 1)

(see Section 3.3). We will denote the vector (γz1 , γz2 , · · · , γzk) by γz where z =

(z1, · · · , zk) ∈ Zk6. We will need to extend the notion of partial derivatives to polyno-

mials in R[x1, . . . , xk]. This will be a non-standard definition, but it will satisfy all

the properties we will need. Instead of defining each partial derivative separately, we

define one operator that will include all of them.

Definition 3.5.1. Let R be a commutative ring and let F (x) = ∑
czxz ∈

R[x1, . . . , xk]. We define

F (1) ∈ (Rk)[x1, . . . , xk] to be

F (1)(x) :=
∑

(cz · z)xz

58

For example, when F (x1, x2) = x2
1x2 + 4x1x2 + 3x2

2 (with integer coefficients),

F (1)(x1, x2) =

2

1

x2
1x2 + 4

1

1

x1x2 + 3

0

2

x2
2 =

2

1

x2
1x2 +

4

4

x1x2 +

0

6

x2
2.

One can think of F (1) both as a polynomial with coefficients in Rk as well as a

k-tuple of polynomials in R[x1, . . . , xk]. This will not matter much since the only

operation we will perform on F (1) is to evaluate it at a point in Rk.

The Protocol

Let a = (a1, a2 · · · , an) ∈ {0, 1}n be an n-bit database shared by two servers S1 and

S2. The user U wants to find the bit aτ without revealing any information about τ

to either server. For the rest of this section, R = R6,6 = Z6[γ]/(γ6 − 1). The servers

represent the database as a polynomial F (x) ∈ R[x] = R[x1, · · · , xk] given by

F (x) = F (x1, · · · , xk) =
n∑
i=1

aixui ,

where U = (u1, . . . ,un) are given by the matching vector family F = (U ,V).

The user samples a uniformly random z ∈ Zk6 and then sends z + t1vτ to S1 and

z+t2vτ to S2 where we fix t1 = 0 and t2 = 1 (other choices of values would also work).

Si then responds with the value of F at the point γz+tivτ , that is with F (γz+tivτ) and

the value of the ‘first order derivative’ at the same point F (1)(γz+tivτ). Notice that

the protocol is private since z + tvτ is uniformly distributed over Zk6 for any fixed τ

and t.

U : Picks a uniformly random z ∈ Zk6

U → Si : z + tivτ

Si → U : F (γz+tivτ), F (1)(γz+tivτ)

59

Recovery

Define

G(t) := F (γz+tvτ) =
n∑
i=1

aiγ
〈z,ui〉+t〈vτ ,ui〉

Using the fact that γ6 = 1, we can rewrite G(t) as:

G(t) =
5∑
`=0

c` · γt`,

with each c` ∈ R given by

c` =
∑

i:〈ui,vτ 〉=` mod 6
aiγ
〈z,ui〉.

Since

〈ui,vτ 〉 mod 6


= 0 if i = τ

∈ S = {1, 3, 4} if i 6= τ

we can conclude that c0 = aτγ
〈uτ ,z〉 and c2 = c5 = 0. Therefore

G(t) = c0 + c1γ
t + c3γ

3t + c4γ
4t.

Next, consider the polynomial

g(T) = c0 + c1T + c3T
3 + c4T

4 ∈ R[T].

By definition we have

g(γt) = G(t) = F (γz+tvτ)

g(1)(γt) =
5∑
`=0

`c`γ
t` =

〈
F (1)(γz+tvτ),vτ

〉
,

60

where the last equality holds since

〈
F (1)(γz+tvτ),vτ

〉
=
〈

n∑
i=1

aiuiγ〈z,ui〉+t〈vτ ,ui〉,vτ
〉

=
n∑
i=1

ai 〈ui,vτ 〉 γ〈z,ui〉+t〈vτ ,ui〉

=
5∑
`=0

`

 ∑
i:〈ui,vτ 〉=` mod 6

aiγ
〈z,ui〉

 γt` =
5∑
`=0

`c`γ
t`

So the user can find the values of g(γt), g(1)(γt) for t = t1, t2. Since t1 = 0, t2 = 1, we

obtain the following matrix equation:



g(1)

g(1)(1)

g(γ)

g(1)(γ)


=



1 1 1 1

0 1 3 4

1 γ γ3 γ4

0 γ 3γ3 4γ4





c0

c1

c3

c4


= M



c0

c1

c3

c4


(3.1)

The determinant (over R) of the matrix M is

det(M) = γ(γ − 1)4(γ2 + 4γ + 1) = 3γ5 + 4γ4 + 3γ3 + 2γ (3.2)

and so, by Lemma 3.3.1, is a nonzero element of the ring R. Since c0 = aτγ
〈uτ ,z〉,

either c0 = 0 or c0 = γ〈uτ ,z〉 which is not a zero-divisor by Remark 3.3.2.

Hence, by Remark 3.3.4, the user can find whether c0 = 0 from the vec-

tor [g(1), g(1)(1), g(γ), g(1)(γ)]t by multiplying it from the left by adj(M). Since

c0 = aτγ
〈uτ ,z〉, aτ will be zero iff c0 is and so the user can recover aτ ∈ {0, 1}.

Communication Cost

The user sends a vector in Zk6 to each server. Each server sends a element of R and

a vector in Rk to the user. Since elements of R have constant size description, the

total communication cost is O(k) = n
O

(√
log logn

logn

)
= no(1).

61

3.5.1 Working over Z6 or F3

Using the ring R6,6 = Z6[γ]/(γ6−1) in the above construction makes the presentation

clearer but is not absolutely necessary. Observing the proof, we see that one can re-

place it with any ring R as long as there is a homomorphism from R6,6 to R such that

the determinant of the matrix M (Eq. 3.2) doesn’t vanish under this homomorphism.

For example, we can work over the ring Z6 and use the element −1 as a substitute

for γ. Since (−1)6 = 1 all of the calculations we did with γ carry through. In

addition, the resulting determinant of M is non zero when setting γ = −1 and so

we can complete the recovery process. More formally, define the homomorphism τ :

Z6[γ]/(γ6−1) 7→ Z6 by extending the identity homomorphism on Z6 using τ(γ) = −1.

Observe that the determinant of the matrix M in Eq. 3.2 doesn’t vanish under this

homomorphism, τ(det(M)) = −4 = 2.

A more interesting example is the ring of integers modulo 3, which we denote by F3

to highlight that it is also a field. We can use the homomorphism φ : Z6[γ]/(γ6−1) 7→

F3 by extending the natural homomorphism from Z6 to F3 (given by reducing each

element modulo 3) using φ(γ) = −1. Again the determinant in Eq. 3.2 doesn’t vanish.

This also shows that our scheme can be made to be bilinear, as defined in [RY06],

since the answers of each server become linear combinations of database entries over

a field and the recovered bit is also a linear combination of the answers of each server.

3.6 An Alternative Construction

In the construction of Section 3.5, we used the special properties of Grolmusz’s con-

struction, namely that the nonzero inner products are in the special set S = {1, 3, 4}.

Here we show how to make the construction work with any matching vector family

(over Z6). This construction also introduces higher order differential operators, which

could be of use if one is to generalize this work further.

62

Suppose we run our protocol (with R = R6,6) using a matching vector family with

S = Z6\{0}. Then, we cannot claim that c2 = c5 = 0, but we still have c0 = aτγ
〈uτ ,z〉.

We can proceed by asking for the ‘second order’ derivative of F (x) = ∑n
i=0 aixui which

we define as

F (2)(x) :=
∑

cz (z⊗ z) xz

where z ⊗ z is the k × k matrix defined by (z ⊗ z)ij = zizj. For example, when

P (x1, x2) = x2
1x2 + 4x1x2 + 3x2

2,

P (2)(x1, x2) =

4 2

2 1

x2
1x2 + 4

1 1

1 1

x1x2 + 3

0 0

0 4

x2
2

=

4 2

2 1

x2
1x2 +

4 4

4 4

x1x2 +

0 0

0 12

x2
2.

The final protocol is:

U : Picks a uniformly random z ∈ Zkm

U → Si : z + tivτ

Si → U : F (γz+tivτ), F (1)(γz+tivτ), F (2)(γz+tivτ)

Notice that privacy is maintained and the communication is O(k2) = no(1) as before.

For recovery, define g(T) ∈ R[T] as before and notice that, in addition to the identities

g(γt) =
5∑
`=0

c`γ
t` = F (γz+tvτ)

g(1)(γt) =
5∑
`=0

`c`γ
t` =

〈
F (1)(γz+tvτ),vτ

〉
,

we also get the second order derivative of g from

g(2)(γt) =
5∑
`=0

`2c`γ
t` =

〈
F (2)(γz+tvτ),vτ ⊗ vτ

〉
,

63

where the inner product of matrices is taken entry-wise and using the identity

〈u⊗ u,v⊗ v〉 = 〈u,v〉2. By choosing t1 = 0, t2 = 1, we have the following matrix

equation:



g(1)

g(1)(1)

g(2)(1)

g(γ)

g(1)(γ)

g(2)(γ)



=



1 1 1 1 1 1

0 1 2 3 4 5

0 1 4 9 16 25

1 γ γ2 γ3 γ4 γ5

0 γ 2γ2 3γ3 4γ4 5γ5

0 γ 4γ2 9γ3 16γ4 25γ5





c0

c1

c2

c3

c4

c5



= M



c0

c1

c2

c3

c4

c5



.

det(M) = 4γ3(γ − 1)9 = 4 + 2γ3 6= 0 and so we can use recover aτ as before.

3.7 Generalization to more servers: Proof of The-

orem 3.1.3

In this section we will prove Theorem 3.1.3. We will allow the database symbols to

belong to a slightly larger alphabet Zm. Let q = 2r−1 denote the number of servers

S1, · · · ,Sq for some r ≥ 2. Let m = p1p2 · · · pr where p1, p2, · · · , pr are distinct

primes. By Theorem 3.3.6, there is an explicit S-matching vector family F = (U ,V)

of size n and dimension k = nO((log logn/ logn)1−1/r) where S = {a ∈ Zm : a mod pi ∈

{0, 1} ∀ i ∈ [r]} \ {0}. By Remark 3.3.7, |S ∪ {0}| = 2r = 2q.

The Protocol

We will work over the ring R = Rm,m = Zm[γ]/(γm − 1). The servers represent the

database a = (a1, · · · , an) ∈ Znm as a polynomial F (x) ∈ R[x] = R[x1, · · · , xk] given

64

by

F (x) = F (x1, · · · , xk) =
n∑
i=1

aixui ,

where U = (u1, . . . ,un) are given by the matching vector family F = (U ,V).

The user samples a uniformly random z ∈ Zkm and then sends z + tivτ to Si for

i ∈ [q] where ti = i − 1. Si then responds with the value of F at the point γz+tivτ ,

that is with F (γz+tivτ) and the value of the ‘first order derivative’ at the same point

F (1)(γz+tivτ). Notice that the protocol is private since z+tvτ is uniformly distributed

over Zkm for any fixed τ and t.

U : Picks a uniformly random z ∈ Zkm

U → Si : z + tivτ

Si → U : F (γz+tivτ), F (1)(γz+tivτ)

Recovery

Similar to the 2-server recovery, we define

G(t) := F (γz+tvτ) =
n∑
i=1

aiγ
〈z,ui〉+t〈vτ ,ui〉 = c0 +

∑
`∈S

c`γ
t`,

and

g(T) = c0 +
∑
`∈S

c`T
` ∈ R[T],

so that c0 = aτγ
〈uτ ,z〉 and

g(γt) = G(t) = F (γz+tvτ)

g(1)(γt) =
m−1∑
`=0

`c`γ
t` =

〈
F (1)(γz+tvτ),vτ

〉
,

Hence, the user can calculate the values of g(γt), g(1)(γt) for t = t1, · · · , tq and we end

up with the following (square) system of equations:

65



g(γt1)

g(1)(γt1)
...

g(γtq)

g(1)(γtq)


=



1 · · · γt1` · · ·

0 · · · `γt1` · · ·
...

1 · · · γtq` · · ·

0 · · · `γtq` · · ·





c0

...

c`
...


= M



c0

...

c`
...



where the 2r = 2q columns are indexed by ` ∈ {0} ∪ S. Instead of computing the

determinant (and the adjugate matrix), we will use the following lemma (proven

below).

Lemma 3.7.1. There exists a row vector

λ = [α1, β1, · · · , αq, βq] ∈ R2q

such that λM = [µ, 0, · · · , 0] for some µ ∈ R where µ mod pi 6= 0 ∀i ∈ [r].

Using this lemma, the user can recover aτ as follows. We have

ν := λ



g(γt1)

g(1)(γt1)
...

g(γtq)

g(1)(γtq)


= λM



c0

...

c`
...


= [µ, 0, · · · , 0]



c0

...

c`
...


= µc0

Taking this equation modulo pi we get,

(ν mod pi) = (µc0 mod pi) = (µ mod pi)(aτ mod pi)γ〈uτ ,z〉.

66

Let µ = ∑m−1
j=0 µjγ

j and ν = ∑m−1
j=0 νjγ

j. Since µ mod pi 6= 0, there exists j such

that µj mod pi 6= 0. So (aτ mod pi) = (µj mod pi)−1(νj+〈uτ ,z〉 mod pi). So we can

find aτ mod pi for each i ∈ [r]. Finally we use Chinese Remainder Theorem to find

aτ ∈ Zm.

To prove Lemma 3.7.1, we will need the following simple number-theoretic lemma.

Recall that the order of an element a in a finite multiplicative group G is the smallest

integer w ≥ 1 so that aw = 1.

Lemma 3.7.2. Let Fp be a field of prime order p and let k ≥ 1 be an integer co-prime

to p. Then, the algebraic closure of Fp contains an element ζ of order k.

Proof. Since k, p are co-prime, p ∈ Z∗k which is the multiplicative group of invertible

elements in Zk. Let w ≥ 1 be the order of p in the group Z∗k, so k divides pw − 1.

Consider the extension field Fpw , which is a sub field of the algebraic closure of Fp.

The multiplicative group F∗pw of this field is a cyclic group of size pw − 1. Since k

divides this size, there must be an element in Fpw of order k. �

3.7.1 Proof of Lemma 3.7.1

For any λ = [α1, β1, · · · , αq, βq] ∈ R2q we can define a function h : S ∪ {0} 7→ R as:

h(`) = (λM)` =
(q∑
i=1

αiγ
ti`

)
+ `

(q∑
i=1

βiγ
ti`

)
.

Our goal is then to construct an h of this form such that

h(`)


= 0 if ` ∈ S

= µ if ` = 0

67

where (µ mod pi) 6= 0 ∀i ∈ [r]. Notice that, by Chinese Remaindering,

R = Rm,m
∼= Rp1,m × . . .×Rpr,m, (3.3)

where we recall that Rpi,m = Zpi [γ]/(γm−1). Therefore, we also get that, for a formal

variable x, the rings of univariate polynomials also satisfy

R[x] ∼= Rp1,m[x]× . . .×Rpr,m[x].

In other words, any family of polynomials fi ∈ Rpi,m[x], i ∈ [r] can be ‘lifted’ to

a single polynomial f ∈ R[x] so that (f mod pi) = fi for all i (reducing f mod

pi is done coordinate-wise). Moreover, since this lift is done coefficient-wise (using

Eq. 3.3), we get that the degree of f is equal to the maximum of the degrees of the fi’s.

We begin by constructing, for each i ∈ [r] the following polynomial fi(x) ∈ Rpi,m[x]:

fi(x) =
∏

`∈S, `=0 mod pi

(x− γ`)

The degree of fi is 2r−1−1 = q−1 so, by the above comment, we can find a polynomial

f(x) ∈ R[x] of degree q − 1 such that f(x) ≡ fi(x) mod pi for all i ∈ [r]. Define

αi, i ∈ [q] to be the coefficients of the polynomial f so that f(x) = ∑q
i=1 αix

i−1. Since

we defined ti = i− 1, we have f(x) = ∑q
i=1 αix

ti . Define βi = −αi for all i ∈ [q]. Our

final construction of h is thus

h(`) = f(γ`)− `f(γ`).

Claim 3.7.3. h(`) = 0 ∀` ∈ S

68

Proof. Since 0 /∈ S, ` 6= 0. We will look at h(`) modulo each of the primes.

h(`) mod pi = fi(γ`)− (` mod pi)fi(γ`)

=


fi(γ`) = 0 if ` = 0 mod pi

fi(γ`)− fi(γ`) = 0 if ` = 1 mod pi

Therefore, using Chinese Remaindering, h(`) = 0 ∀` ∈ S. �

Claim 3.7.4. (h(0) mod pj) 6= 0 for all j ∈ [r]

Proof. Suppose in contradiction that (h(0) mod pj) = 0, then

h(0) mod pj = fj(1) =
∏

`∈S, `=0 mod pj

(1− γ`) = 0.

The above equation holds in the ring
(
Zpj [γ]/(γm − 1)

)
. Therefore, if we consider

what happens in the ring Zpi [γ] ∼= Fpi [x] (we replace the formal variable γ with x to

highlight the fact that x does not satisfy any relation) we get that

∏
`∈S, `=0 mod pj

(1− x`) = (xm − 1)θ(x) (3.4)

for some polynomial θ(x) ∈ Fpj [x]. The above equation is an identity in the ring

Fpj [x]. So we can check its validity by substituting values for x from the algebraic

closure of Fpj . Let m′ = m/pj and let ζ be an element in the algebraic closure of Fpj

of order m′ (so ζ` = 1 iff m′ divides `). Since m′ and pj are co-prime, such an element

exists by Lemma 3.7.2. If we substitute ζ into Eq. 3.4, the RHS is zero (since m′

divides m). However, each term in the LHS product is nonzero, since if ` = 0 mod pj

and m′ divides ` then ` = 0 mod m but we know that 0 /∈ S. Since we are working

over the algebraic closure of Fpj which is a field, the product of nonzero elements is

nonzero. This is a contradiction, and so Eq. 3.4 does not hold. �

69

3.8 Concluding remarks

In this work we presented the first 2-server PIR scheme with sub-polynomial cost. It is

unclear what is the optimal communication cost of 2-server schemes and we conjecture

that our protocol is far from optimal. Clearly, a construction of MV families in Zk6

of larger size will immediately give better 2-server PIR schemes. There is very little

known about the limitations of this approach and current upper bounds on the size of

MV families are nearly exponential [DGY10, BDL13, DH13]. In [BDL13], for constant

m, an upper bound of exp (c(m)k/ log k) was obtained on the the size of MV families

over Zkm where c(m) depends only on m, assuming a well-known conjecture in additive

combinatorics called the polynomial Freiman-Ruzsa conjecture over Zm. If this bound

is tight, it would give a O(log n log log n) communication constant server PIR. When

m is large, an upper bound of qO(q log q)mk/2 was shown on the size of S-matching

vector families over Zkm where q = |S| + 1. Thus all the known upper bounds are

consistent with obtaining poly-logarithmic communication cost for 2-server protocols

using our approach.

Another approach to decrease the communication cost is to take m to be a product

of r > 2 prime factors in Theorem 3.3.6 to get a larger S-matching vector family where

S = {a ∈ Zm : a mod pi ∈ {0, 1} ∀ i ∈ [r]} \ {0} which is of size 2r − 1. So we need

2r−1 independent equations from each server to find c0. We can ask the servers for

derivatives of F at γz+tvτ up to order 2r−1 − 1. If these equations are ‘independent’

i.e. the determinant of the coefficient matrix doesn’t vanish then we can find c0. If

we can do this, we can decrease the cost to nO(2r(log logn/ logn)1−1/r). But observe that

for each l ∈ S, l2 = l mod m since l mod pi ∈ {0, 1} ∀i ∈ [r]. So higher order

derivatives of g are equal to the first order derivative and we get repeated rows in the

coefficient matrix M (Eq. 3.1).

All the known PIR schemes are single round and it is an interesting open problem

to see if interaction can decrease the cost.
70

3.9 Subsequent work

The results of this chapter has led to new developments in (information theoretic)

cryptography. The 2-server PIR schemes from this chapter have been used to get

improved schemes for conditional disclosure of secrets and secret sharing [LVW17,

LVW18].

71

Chapter 4

Locality near Gilbert-Varshamov

bound

4.1 Introduction

In this paper, we show the existence of binary locally testable codes and locally

correctable codes with rate-distance tradeoff matching what is known for general

error-correcting codes.

One of the main combinatorial problems of coding theory is to determine the best

tradeoff between the rate and the minimum distance for binary error-correcting codes.

The best tradeoff known today is known as the Gilbert-Varshamov (GV) bound, and

states that for every δ ∈ (0, 1/2), there exist codes of arbitrarily large length with

minimum distance δ and rate R = RGV(δ). Here RGV is the function:

RGV(δ) = 1−H(δ),

where H is the binary entropy function. There are many known families of codes,

including random codes, that achieve the GV bound, and it has been often conjectured

that the GV bound is tight.

72

On the algorithmic side, it is not known how to deterministically construct codes

that achieve the GV bound in polynomial time. Nevertheless, efficient determin-

istic constructions of codes with quite good rate-distance tradeoff are known, and

furthermore these codes come equipped with efficient error-detection and correction

algorithms. An alternate research direction, which is most relevant for us, has been

to show existence of highly structured codes achieving the GV bound. Here we men-

tion the beautiful results of Thommesen [Tho83], who gave a randomized construc-

tion of codes closely related to Reed-Solomon codes that meet the GV bound, and

of Guruswami-Indyk [GI04], who gave a polynomial time algorithm for decoding

Thommesen’s codes from δ/2-fraction errors (for sufficiently large δ < 1/2). This lat-

ter work uses deep results of Guruswami-Sudan [GS99, GS00, GS02] on list-decoding

Reed-Solomon codes and concatenated codes.

Our main result is that there are codes that approach the GV bound, that can be

locally tested and locally corrected from (δ/2 − o(1))-fraction errors with sublinear

(even polynomially small) query complexity. For binary codes, it was previously

known how to do this for codes approaching the Zyablov bound [KMRS17], with the

added advantage that the code also had an efficient deterministic construction.

We give the formal statements of our main results next.

Theorem 4.1.1 (Locally testable codes approaching the GV bound). Let δ ∈ (0, 1/2)

and R < RGV(δ). For every large enough n ∈ N, there exists a binary linear code

Cn ⊂ {0, 1}n such that:

• rate of Cn is at least R,

• Cn is a (q, δ, 1/4)-LTC i.e. Cn is locally testable with q = (log n)O(log logn)

queries.

Moreover, there exists a randomized algorithm which, on input n ∈ N, runs in time

poly(n) and outputs with high probability a generating matrix for a code Cn ⊆ {0, 1}n

73

with the properties above and a local tester for Cn. The local testing algorithm runs

in time (log n)O(log logn). 1

Theorem 4.1.2 (Locally correctable codes approaching the GV bound). Let ε > 0,

and let ξ > 0 be sufficiently small (depending on ε). Additionally, let δ = 1
2 − ξ and

R < (1− ε) ·RGV(δ). For every large enough n ∈ N, there exists a binary linear code

Cn ⊂ {0, 1}n such that:

• the minimum distance of Cn is at least δ,

• the rate of Cn is at least R,

• Cn is a (q, (δ2 − o(1)), 1/3)-LCC with q = O(nε) i.e. Cn is locally correctable

from (δ2 − o(1))-fraction errors with O(nε) queries.

Furthermore, there exists a randomized algorithm which, on input n ∈ N, runs in

time poly(n) and outputs with high probability the generating matrix of a code Cn ⊆

{0, 1}n with the properties above and a local correction algorithm. The local correction

algorithm runs in time nO(ε). 2

Remark 4.1.3. To simplify presentation, throughout this paper, we will assume that

the LTCs involved have the robustness parameter from Definition 2.5.1 fixed to ρ =

1/4. Similarly we will assume that all the LCCs in this paper have the correction

probability to be ≥ 2/3 i.e. Equation 2.5 in Definition 2.4.1 is replaced by the stronger

condition that the probability of correcting any given coordinate is ≥ 2/3. Since our

results are about constructions, these assumptions only make our results stronger.

Note that our result about local testability allows for codes with rate and distance

arbitrarily close to the GV bound for any distance δ ∈ (0, 1/2), but our result about
1The randomized algorithm can output different codes and testers (correctors) under different

random choices, we are only guaranteed that the output code and the corresponding tester (corrector)
have the required local testing (correcting) properties with high probability.

2See Footnote 1.

74

local correctability only achieves this for distances sufficiently close to 1/2 depending

on ε where O(nε) is the query complexity, and with a further (1 − ε)-factor loss in

the rate. These results are the first to show that codes with distance δ = 1/2− ξ and

rate Ω(ξ2) can be locally tested / locally corrected from (δ/2− o(1))-fraction errors.

We remark that analogous results over large alphabets were only recently ob-

tained [KMRS17]. In this setting, the best tradeoff between R and δ for general

codes is completely known. Every code must satisfy R ≤ 1− δ; this bound is known

as the Singleton bound. Furthermore, Reed-Solomon codes achieve R = 1 − δ, and

they can be decoded from a δ/2-fraction of errors in polynomial time. In [KMRS17],

it was shown that there exist explicit locally testable codes and locally correctable

codes which satisfy R = 1 − δ − ε (for all ε > 0), and which can further be locally

tested and locally corrected from (δ/2 − o(1))-fraction errors in sublinear (and even

subpolynomial) time.

4.1.1 Methods

The starting point for our constructions is the random concatenation technique of

Thommesen [Tho83], which he used to show that codes of a particular simple form

can achieve the GV bound. Specifically, he showed that if one takes a Reed-Solomon

code over a large alphabet as the outer code, and concatenate it with binary linear

inner codes chosen uniformly at random and independently for each outer coordinate,

then the resulting code C lies on the GV bound with high probability. In fact, the

only property of Reed-Solomon codes that is used in this result is that the rate and

distance of Reed-Solomon codes lie on the Singleton bound.

Our construction of locally testable codes approaching the GV bound then follows

from the result of [KMRS17], which gave constructions of locally testable codes with

rate and distance approaching the Singleton bound. We start with such a locally

testable code from [KMRS17] as the outer code, and then concatenate it with uni-

75

formly random binary linear inner codes (independently for each coordinate of the

outer code). The required rate-distance tradeoff of the concatenated code follows

from Thommesen’s arguments, and the local testability follows easily from the local

testability of the outer code.

It is also known how to construct locally correctable codes with rate and distance

approaching the Singleton bound [KMRS17]. If we use these codes along with the ran-

dom concatenation idea, we get locally correctable codes approaching the GV bound.

But Theorem 4.1.2 requires the fraction of errors correctable by the local correction

algorithm to approach δ/2. The natural local correction algorithm for concatenated

codes (using the local correction algorithm of the outer code, and decoding inner

codes by brute-force whenever an outer coordinate needs to be accessed) turns out to

only decode to a much smaller radius (namely half the Zyablov bound); see [KMRS17]

for details.

Our proof of Theorem 4.1.2 uses several more ideas. The next ingredient we

use is an insight of Guruswami and Indyk [GI04]. They noted that the code C

constructed by Thommesen could be decoded from δ/2 fraction errors in polynomial

time, provided the distance δ of C is sufficiently large (equivalently, provided the rate

R of C is sufficiently small). The main idea is to use the list-decoding algorithms

for concatenated codes developed by Guruswami and Sudan [GS00, GS02], which for

binary codes of distance nearly 1/2, can list decode from a fraction of errors that

is also nearly 1/2 – in particular, the fraction of errors correctable is far more than

half the minimum distance (which is around 1/4). One first list-decodes each of

the inner concatenated codes (by brute-force) to get a list of candidate symbols for

each coordinate of the Reed-Solomon code, and then one applies the list-recovery3

algorithm (of Guruswami and Sudan [GS99]) for the outer Reed-Solomon code to
3A list-recovery algorithm is a generalization of a list-decoding algorithm. Here one is given

a small list of candidate symbols Si for each coordinate i of the code, and the goal is to find all
codewords c ∈ C which have the property that for at most α fraction of the coordinates i, the ith
coordinate of c does not lie in Si.

76

get a list of candidate codewords. Finally, by computing the distance between each

of these candidate codewords and the given received word, one can identify the one

codeword (if any) that lies within distance δ/2 of the received word.

Our local correction algorithm will try to implement this high-level strategy in

the local setting. We will choose an outer code C over a large alphabet with suitable

properties, and concatenate it with independently chosen random binary linear inner

codes. We describe the properties required of C next:

• First of all, our choice of C should be such that the concatenated code ap-

proaches the GV bound with high probability. We will achieve this by ensuring

that C has a sufficiently good rate-distance tradeoff4.

• Next, we would like C to be locally list-recoverable. A local list-recovery al-

gorithm is an algorithm that solves the list-recovery problem (in an implicit

manner) using few queries. Instead of outputting all nearby codewords (which

is impossible using few queries), the local list-recovery algorithm outputs im-

plicit description of words w1, . . . , wL which is guaranteed to contain all nearby

codewords.

• Finally, we would like C to be locally testable. This is in order to identify which

of the words wi are actually codewords. Having done this, we can easily identify,

by estimating distances via sampling, the one codeword wi that is δ/2-close to

our original received word.

To encapsulate the requirements on C, we define the stronger notion of “sound”

local list-recoverability (see Definition 4.2.6), which requires that each wi in the output

list of C describes some codeword. This is why we need local testability in addition to

the standard list-recoverability: to weed out wj which do not describe any codeword.
4The rate-distance tradeoff will be quite close to, but not approaching, the Singleton bound. This

is the reason for our final locally correctable codes of Theorem 4.1.2 achieving rate that is smaller
than RGV(δ) by a factor (1− ε).

77

Summarizing, we want C to be locally list-recoverable, locally testable and have

a decent rate-distance tradeoff. One might have hoped that the recently constructed

codes of [KMRS17], which achieve local testability and local correctability with op-

timal rate-distance tradeoff (on the Singleton bound) would be good candidates for

C. Unfortunately, none of the codes from [KMRS17] are known to achieve local

list-recoverability.

Instead, we go further back in time to the mother of all local codes, Reed-Muller

codes. they do not have good rate-distance tradeoff. This brings us to our final in-

gredient: Alon-Edmonds-Luby (AEL) distance amplification [AEL95]. This distance

amplification method improves the rate-distance tradeoff for codes. Furthermore, it

was shown in [KMRS17] that this method preserves local testability and local cor-

rectability. Here we observe that this distance amplification method also preserves

local list-recoverability.5 Thus, applying AEL distance amplification to Reed-Muller

codes gives us a code that is locally list-recoverable, locally testable, and also has a

decent rate-distance tradeoff (which turns out to be good enough for our purposes)6.

This gives us the code C, and completes the high-level description of our construc-

tions.

4.1.2 Further remarks

LTCs approaching the GV bound with constant query complexity? Our

construction of LTCs approaching the GV bound is based on two ingredients: an

LTC approaching the Singleton bound [KMRS17], and Thommesen’s random con-

catenation technique. The result of [KMRS17] is in fact quite general: given any

LTC family which can achieve rate arbitrarily close to 1, one can construct another
5In [], it was observed that AEL distance amplification preserves list-recoverability (without the

locality requirement).
6This description suffices for the existence part of Theorem 4.1.2. However, to achieve sublinear

time decoding, we will need one further trick: to concatenate the Reed-Muller codes down to a
smaller alphabet before applying the AEL transformation - this smaller alphabet size is needed to
let us perform the brute force list decoding of the random inner codes step quickly.

78

LTC family which approaches the Singleton bound with only a constant factor blowup

in the query complexity. Putting everything together: if there exist LTCs with rate

arbitrarily close to 1 with query complexity q, then there are LTCs approaching the

GV bound with query complexity O(q). It has often been lamented (at least once

in print [BSGK+10], see page 2) by researchers in the area that we do not know

any lower bounds on the rate-distance tradeoff of LTCs that distinguish them from

general codes, and that for all we know, there could be constant query LTCs on the

GV bound. Our result shows that such a lower bound would imply something much

more qualitative - that there do not exist constant query LTCs with rate arbitrarily

close to 1.

Locally decodable codes. Any linear LCC can be converted into a linear LDC

by a simple basis change (see Section 2.4.1). Since the LCCs we construct in Theo-

rem 4.1.2 are linear, it also implies a corresponding result for LDCs.

4.1.3 Organization of this paper

This paper is structured as follows: in Section 4.2 we provide some background on

error correcting codes and set up the notation that will be used throughout the paper.

In Section 4.3 we show the existence of locally testable codes approaching the GV

bound. In Section 4.4 we show how to convert any code on a large alphabet with

(somewhat) good rate and distance into a binary code nearly approaching the GV

bound. In Section 4.5 we show the existence of locally correctable codes approaching

the GV bound using the latter transformation. In Sections 4.6 and 4.7 we provide

further ingredients needed for the construction of our locally correctable codes, namely

local list recovery algorithm for Reed-Muller codes (in Section 4.6), and distance

amplification procedure for local list recovery (in Section 4.7).

79

4.2 Preliminaries

We denote by Fq the finite field of q elements. For any finite alphabet Σ and for any

string x ∈ Σn the relative weight wt(x) of x is the fraction of non-zero coordinates

of x, that is, wt(x) := |{i ∈ [n] : xi 6= 0}| /n. For any pair of strings x, y ∈ Σn, the

relative distance between x and y is the fraction of coordinates on which x and y

differ, and is denoted by distH(x, y) := |{i ∈ [n] : xi 6= yi}| /n. For a positive integer

` we denote by
(

Σ
`

)
the set containing all subsets of Σ of size `, and for any x ∈ Σn

and S ∈
(

Σ
`

)n
we denote by distH(x, S) the fraction of coordinates i ∈ [n] for which

xi /∈ Si, that is, distH(x, S) := |{i ∈ [n] : xi /∈ Si}| /n. Throughout the paper, we use

exp(n) to denote 2Θ(n). Whenever we use log, it is to the base 2.

4.2.1 Error-correcting codes

Let Σ be an alphabet and let n be a positive integer (the block length). A code is

simply a subset C ⊆ Σn. If F is a finite field and Σ is a vector space over F, we say

that a code C ⊆ Σn is F-linear if it is an F-linear subspace of the F-vector space Σn.

If Σ = F, we simply say that C is linear. The rate of a code is the ratio log |C|
log(|Σ|n) , which

for F-linear codes equals dimF(C)
n·dimF(Σ) .

The elements of a code C are called codewords. The relative distance distH(C) of

C is the minimum δ > 0 such that for every pair of distinct codewords c1, c2 ∈ C it

holds that distH(c1, c2) ≥ δ, which for F-linear codes equals the minimum δ > 0 such

that wt(c) ≥ δ for every c ∈ C. We will use the notation distH(w,C) to denote the

relative distance of a string w ∈ Σn from C, and say that w is ε-close (respectively,

ε-far) to C if distH(w,C) < ε (respectively, if distH(w,C) ≥ ε).

An encoding map for C is a bijection EC : Σk → C, where |Σ|k = |C|. For a code

C ⊆ Σn of relative distance δ, a given parameter α < δ/2, and a string w ∈ Σn, the

80

problem of decoding from α fraction of errors is the task of finding the unique c ∈ C

(if any) which satisfies distH(c, w) ≤ α.

List decodable and list recoverable codes. List decoding is a paradigm that

allows one to correct more than δ/2 fraction of errors by returning a small list of close-

by codewords. More formally, α ∈ [0, 1] and an integer L we say that a code C ⊆ Σn

is (α,L)-list decodable if for any w ∈ Σn there are at most L different codewords

c ∈ C which satisfy that distH(c, w) ≤ α. The Johnson bound (see e.g., Corollary

3.2. in [Gur06]) states that any code C ⊆ Σn of relative distance at least (1 − 1
|Σ|)δ

is (α,L)-list decodable for α ≈ (1− 1
|Σ|)(1−

√
1− δ) and constant L (independent of

n).

Theorem 4.2.1 (Johnson bound). Let C ⊆ Σn be a code of relative distance at least

(1 − 1
|Σ|)δ. Then C is

(
(1 − 1

|Σ|)α,L
)
-list decodable for any α < 1 −

√
1− δ with

L = 1
(1−α)2−(1−δ) .

For decoding concatenated codes it is often useful to consider the notion of list

recovery where one is given as input a small list of candidate symbols for each of the

coordinates and is required to output a list of codewords that are consistent with

many of the input lists. More specifically, we say that a code C ⊆ Σn is (α, `, L)-list

recoverable if for any S ∈
(

Σ
`

)n
there are at most L different codewords c ∈ C which

satisfy that distH(c, S) ≤ α.

Some useful codes. In what follows we mention several families of codes that will

be used in our construction.

Let q be a prime power, let d, n be positive integers such that d ≤ n ≤ q, and

let α1, α2, . . . , αn be n distinct points in Fq. The Reed-Solomon code RSn(d, q) is

the subset of Fnq containing all words of the form (p(α1), p(α2), . . . , p(αn)) where

p ∈ Fq[x] is a univariate polynomial of degree less than d over Fq. It can be verified

81

that RSn(d, q) has rate d/n and it is well-known that it has relative distance at least

1−d/n. In [Sud97, GS99] it was shown that the Reed-Solomon codes can be efficiently

list decoded up to the Johnson bound. We state here a stronger form that applies

also to list recovery (see e.g., Theorem 4.11 in [Gur06]).

Theorem 4.2.2 (List recovery of Reed-Solomon codes). The following holds for any

prime power q, and integers d, n, ` which satisfy that `d ≤ n ≤ q. There exists

a deterministic algorithm which given an input S ∈
(
Fq
`

)n
, outputs all codewords

c ∈ RSn(d, q) such that distH(c, S) < 1−
√
` · d

n
. The running time of the algorithm

is poly(q).

For a prime power q and integers d < q and m the Reed-Muller code RM(m, d, q) is

the subset of Fqmq containing all words of the form (p(α))α∈Fmq where p ∈ Fq[x1, . . . , xm]

is a polynomial of (total) degree less than d in m variables over Fq. Note that

RSq(d, q) = RM(1, d, q) for every d, q. It can also be verified that RM(m, d, q) has

rate (
m+d
m

)
qm

≥
(
d

mq

)m

and relative distance at least 1− d/q.

We shall also use the following fact which says that a random binary linear code

achieves the Gilbert-Varshamov bound [Gil52, Var57] with high probability. For x ∈

[0, 1] let H(x) = x log x+ (1− x) log(1− x) denote the binary entropy function.

Fact 4.2.3 (Gilbert-Varshamov (GV) codes). For any δ ∈ [0, 1/2) and R ∈ (0, 1 −

H(δ)), for sufficiently large n, a random binary linear code of block length n and rate

R has relative distance at least δ with probability at least 1− exp(−n).

4.2.2 Locally list decodable and list recoverable codes.

The following definition generalizes the notion of locally correctable codes to the

setting of list decoding. In this setting the corrector algorithm is required to find
82

all the nearby codewords in an implicit sense. Note that our definition below also

includes a nonstandard soundness property.

Definition 4.2.4 (Locally list decodable code). We say that a code C ⊆ Σn is

(q, α, ε, L)-locally list decodable if there exists a randomized algorithm A that satisfies

the following requirements:

• Input: A gets oracle access to a string w ∈ Σn.

• Query complexity: A makes at most q queries to the oracle w.

• Output: A outputs L randomized algorithms A1, . . . , AL. When algorithm Aj

is given as input a coordinate i ∈ [n], it makes at most q queries to the oracle

w and outputs a symbol in Σ.

• Completeness:7 For every codeword c ∈ C that is α-close to w, with proba-

bility at least 1− ε over the randomness of A the following event happens: there

exists some j ∈ [L] such that for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2
3 ,

where the probability is over the internal randomness of Aj.

• Soundness: With probability at least 1 − ε over the randomness of A, the

following event happens: for every j ∈ [L], there exists some c ∈ C such that

for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2
3 ,

where the probability is over the internal randomness of Aj.
7We can in fact satisfy the following, and more natural definition of completeness: with high

probability, all codewords in the ball appear in the output of A. The reason is that we can amplify
the tester so it will reject close-by codewords with probability at most 1/n by paying a multiplicative
factor of O(logn) in number of queries. Since number of close-by codewords is O(nβ) one can then
apply a union bound over all close-by codewords to show that with probability at least 0.99, say, all
of them will be accepted.

83

We say that A has running time T if A outputs the description of the algorithms

A1, . . . , AL in time at most T and each Aj has running time at most T .

Remark 4.2.5. (On the soundness property) Typically locally list decodable codes

are defined without the soundness property. For us, the soundness property is impor-

tant to allow us to identify the unique closest codeword to the given received word.

In a later section, we will first construct a locally list decodable code without the

soundness property, and then we will achieve soundness via local testing.

The definition of locally list decodable codes can also be extended to the setting

of list recovery, the only difference is that the input is a tuple S ∈
(

Σ
`

)n
instead of a

string w ∈ Σn. The same remarks about the soundness property apply to this case

also.

Definition 4.2.6 (Locally list recoverable code). We say that a code C ⊆ Σn is

(q, α, ε, `, L)-locally list recoverable if there exists a randomized algorithm A that sat-

isfies the following requirements:

• Input: A gets oracle access to an S ∈
(

Σ
`

)n
.

• Query complexity: A makes at most q queries to the oracle S.

• Output: A outputs L randomized algorithms A1, . . . , AL, where each Aj takes

as input a coordinate i ∈ [n], makes at most q queries to the oracle S and

outputs a symbol in Σ.

• Completeness: For every codeword c ∈ C for which distH(c, S) ≤ α, with

probability at least 1−ε over the randomness of A, the following event happens:

there exists some j ∈ [L] such that for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2
3 ,

where the probability is over the internal randomness of Aj.
84

• Soundness: With probability at least 1 − ε over the randomness of A, the

following event happens: for every j ∈ [L], there exists some c ∈ C such that

for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2
3 ,

where the probability is over the internal randomness of Aj.

As above, we say that A has running time T if A outputs the description of the

algorithms A1, . . . , AL in time at most T and each Aj has running time at most T .

Note that a code is (q, α, ε, L)-locally list decodable if and only if it is (q, α, ε, 1, L)-

locally list recoverable.

4.3 LTCs approaching the GV bound

In this section we prove the following theorem which implies Theorem 4.1.1 from the

introduction.

Theorem 4.3.1 (LTCs approaching the GV bound). For any δ ∈ [0, 1
2) and 0 < γ <

1 − H(δ), there exists an infinite family {C ′n}n of binary linear codes which satisfy

the following. The code C ′n has block length n, rate at least 1 − H(δ) − γ, relative

distance at least δ, and is (log n)O(log logn)-locally testable.

Moreover, there is a randomized polynomial time algorithm which, given n, with

probability 1−exp(−n), outputs a code of length n and a tester with the above proper-

ties,8 and the local testing algorithm runs in time polynomial in the number of queries

i.e. (log n)O(log logn).

To prove the above theorem we first show in Section 4.3.1 a transformation which

turns any large alphabet code approaching the Singleton bound into a binary code
8It might return different codes and testers under different random choices, we are only guaranteed

that the output code and tester will have the required properties with high probability.

85

approaching the GV bound. In Section 4.3.2 we will then use this transformation to

obtain LTCs approaching the GV bound.

4.3.1 Approaching the GV bound via random concatenation

Thommesen [Tho83] used the operation of random concatenation to construct a bi-

nary code lying on the GV bound out of a large alphabet code lying on the Singleton

bound. In actuality, Thommesen’s proof is more general than that: it shows that one

can transform, via random concatenation, any linear code of rate R and large enough

distance δ over a large alphabet (2t) into a binary code with the same rate R and

distance δ′ which is only slightly smaller than δ/2. The following lemma shows an

approximate version of Thommesen’s argument. With this approximate version, an

important corollary is that we can replace “lying on the GV bound” with “close to

the GV bound” in Thommesen’s original statement, which we will use in this paper.

The proof is identical to Thommesen’s.

The intuition is based on the following observations: since the codes are linear,

in order to preserve high distance it is enough to preserve the Hamming weights of

the codewords. Suppose the large alphabet is F2t . A random invertible mapping

from F2t → Ft2 maps the nonzero elements of F2t uniformly over Ft2 \ {0}. Thus, if

each coordinate of the large alphabet is mapped to an element of Ft2 by a random

invertible mapping (each mapping being chosen independently for each coordinate),

one expects the weight of the image of each nonzero coordinate to be its typical value.

Hence, there will be a small probability that the weight of the new codeword is small

(over the choice of random mappings). To bound this probability, we crucially use

(for the union bound over all codewords of the original code) the fact that the relative

distance of the original code is sufficiently large.

Lemma 4.3.2. Let t ∈ N be a large enough integer. The following holds for any

δ ∈ (2/t, 1/2), and sufficiently large n. Let C ⊆ Fn2t be a linear code of rate R and
86

relative distance δ. Let C ′ ⊆ Ft·n2 be a code obtained from C by applying a (uniformly)

random invertible F2-linear transformation Ti : F2t → Ft2 on each coordinate i ∈ [n] of

C independently. Then C ′ has rate R and relative distance at least δ′ = H−1(δ− 2/t)

with probability at least 1− exp(−n).

Proof. The proof follows the arguments of [Tho83].

Fix a codeword c ∈ C with wt(c) = α ≥ δ and let c′ ∈ Ftn2 be a word obtained from

c by applying a uniformly random invertible F2-linear transformation Ti : F2t → Ft2

on each coordinate i ∈ [n] of c independently. Then for each non-zero coordinate i of

c it holds that the i-th block of c′ of length t is distributed uniformly over Ft2 \ {0}.

Let c′′ be a random word obtained by assigning uniformly random values in Ft2 to

non-zero coordinates of c. We thus have that

Pr[wt(c′) < δ′] ≤ Pr[wt(c′′) < δ′] ≤
(
αtn

≤ δ′tn

)
2−αtn

≤ 2H(δ′/α)αtn · 2−αtn,

where the last inequality follows from the well known fact
(

m
≤βm

)
≤ 2H(β)·m for β ≤

1/2. (Here we use the fact that δ′ < δ/2 ≤ α/2, given our choice of δ′.)

Next we apply a union bound over all codewords c ∈ C. For this fix α > 0 such

that α ≥ δ and αn ∈ N. The number of codewords in C of relative weight α is at

most (
n

αn

)
·
(
2t
)αn−δn

≤ 2n · 2(α−δ)tn,

where the above bound follows since there are at most
(
n
αn

)
choices for the location of

the non-zero coordinates, and for any such choice fixing the value of the first αn− δn

non-zero coordinates determines the value of the rest of the non-zero coordinates

(since two different codewords cannot differ on less than δn coordinates).

87

Consequently, we have that

Pr[distH(C ′) < δ′] ≤ (4.1)∑
δ≤α≤1,
αn∈N

2n · 2(α−δ)tn · 2H(δ′/α)αtn · 2−αtn =

∑
δ≤α≤1,
αn∈N

exp
[
−tn

(
δ − α ·H

(
δ′

α

)
− 1
t

)]
=

∑
δ≤α≤1,
αn∈N

exp
[
−tn

(
(δ − 2/t)− α ·H

(
δ′

α

)
+ 1
t

)]
.

So for distH(C ′) ≥ δ′ to hold with probability at least 1 − exp(−n) it suffices to

show that for any δ ≤ α ≤ 1,

δ − 2/t ≥ α ·H
(
δ′

α

)
,

or equivalently,

α ·H−1
(
δ − 2/t
α

)
≥ δ′.

To proceed, we recall an elementary inequality implicit in [Tho83] (see Lemma 3

in [GR10] for an explicit form). Let H−1 : [0, 1]→ [0, 1
2] be the inverse of the binary

entropy function H in the domain [0, 1
2].

Fact 4.3.3. For any 0 ≤ x ≤ y ≤ 1 it holds that H−1(x)
x
≤ H−1(y)

y
.

We now complete the proof of the lemma.

α ·H−1
(
δ − 2/t
α

)
= (δ − 2/t) · H

−1((δ − 2/t)/α)
(δ − 2/t)/α

≥ (δ − 2/t) · H
−1(δ − 2/t)
δ − 2/t

= H−1(δ − 2/t)

= δ′,

88

where the second inequality follows from Fact 4.3.3. �

Plugging in the parameters R = 1−H(δ)−γ and δ = 1−R−γ/2, for any γ ≥ 4/t,

we obtain the approximate version of Thommesen’s result for the GV bound. We state

this formally in the following corollary.

Corollary 4.3.4. The following holds for any δ ∈ [0, 1/2), 0 < γ < 1−H(δ), t ≥ 4
γ

,

and sufficiently large n. Let C ⊆ Fn2t be a linear code of rate R = 1 − H(δ) − γ

and relative distance at least 1− R − γ
2 . Let C ′ ⊆ Ft·n2 be a code obtained from C by

applying a (uniformly) random invertible F2-linear transformation Ti : F2t → Ft2 on

each coordinate i ∈ [n] of C independently. Then C ′ has rate R and relative distance

at least δ with probability at least 1− exp(−n).

4.3.2 LTCs approaching the GV bound

We now use Corollary 4.3.4 to show the existence of LTCs approaching the GV bound.

To this end we first prove the following lemma which says that if C is locally testable

then so is the code C ′ obtained in Corollary 4.3.4.

Lemma 4.3.5. Let C ⊆ Fn2t be a code and let C ′ ⊆ Ft·n2 be a code obtained from C by

applying an invertible transformation Ti : F2t → Ft2 on each coordinate i ∈ [n] of C.

Suppose furthermore that C is q-locally testable in time T . Then C ′ is O(q · t2)-locally

testable in time O(T · poly(t)).9

Proof. Let A be the local tester for C. We will first define a local tester A′′ for C ′

which will have small soundness. We will amplify the soundness by repeating A′′ O(t)

times and accepting only if all the tests are accepted to get the final local tester A′.

Given oracle access to w′ ∈ Ft·n2 the local tester A′′ for C ′ runs A and answers each

query i of A by inverting Ti on the i-th block of w′ of length t.
9The tester for C ′ should know the transformations Ti’s.

89

The completeness property clearly holds. To show that the soundness property

holds as well suppose that w′ /∈ C ′ and let w ∈ Fn2t be the word obtained from w′

by inverting all the transformations Ti. As each corrupted symbol of w corresponds

to at most t corrupted symbols in w′, we have distH(w′, C ′) ≤ t · distH(w,C). Then

A′′ rejects w′ with probability at least 1
4 · distH(w,C) ≥ 1

4 · distH(w′, C ′)/t. By

running A′′ O(t) times, the rejection probability gets amplified to 1
4 · distH(w′, C ′).

Finally, note that the overall query complexity is O(q · t2) and overall running time

is O(T · poly(t)). �

To obtain the final LTCs we shall also use the following theorem from [KMRS17,

Theorem 1.2] which states the existence of LTCs approaching the Singleton bound.

Theorem 4.3.6 (LTCs approaching the Singleton bound). For any γ > 0, 0 < R ≤

1 − γ, and t ≥ poly(1/γ) there exists an infinite family {Cn}n of linear codes where

each Cn ⊆ Fn2t has rate R, relative distance at least 1−R− γ, and is (log n)O(log logn)-

locally testable.

Moreover, the code Cn can be constructed by a deterministic polynomial time

algorithm, and the local testing algorithm can be implemented to run in time

(log n)O(log logn).

Proof of Theorem 4.3.1. Let δ ∈ [0, 1
2), 0 < γ < 1 − H(δ) and t ∈ N such that

t ≥ poly(4/γ) be fixed constants. By Theorem 4.3.6, there exists a family of codes

{Cn}n with rate R < 1−H(δ)−γ and relative distance at least 1−R−γ/2 = H(δ)+ γ
2

which is (log n)O(log logn)-locally testable.

Corollary 4.3.4 implies that each member of the family of codes {C ′n}n has relative

distance at least δ with probability at least 1 − exp(−n). Moreover, Lemma 4.3.5

implies that each C ′n is O(t2 · (log n)O(log logn)) = (log n)O(log logn)-locally testable in

time (log n)O(log logn), as we wanted. �

90

4.4 Approaching the GV bound via random con-

catenation, again

In this section, we revisit the random concatenation operation and show that it can

be used to get codes approaching the GV bound with weaker hypotheses on the

outer code. In Section 4.3.1 we showed that given a large alphabet code close to the

Singleton bound, we can get a binary code close to the GV bound. We now show

that even if we are given a large alphabet code lying slightly far from the Singleton

bound (but with some decent rate-distance tradeoff and sufficiently large distance),

the random concatenation operation still gives a binary code which is sufficiently close

to the GV bound. In Section 4.5 we will use this to obtain LCCs nearly-approaching

the GV bound with some small (but constant) rate.

Our parameters we aim to construct a code C ′ approaching the GV bound having

relative distance at least 1
2−ξ and rate at least

(
1−H

(
1
2 − ξ

))
·(1−γ). Thus, we have

two parameters of choice, namely ξ and γ, where the first accounts for the relative

distance and the latter accounts for the multiplicative factor approximation that we

will lose on the rate of the new code. Although Lemma 4.4.1 is valid for any choices of

0 < ξ ≤ γ/4 < 1/4, in Section 4.5 we will set γ to be any universal constant less than

1, whereas ξ will be a small constant depending on γ and on another universal constant

to be defined in Theorem 4.5.1. The parameters ξ and γ also provide constraints on

the large alphabet codes which we can use in this construction, as we will see in the

next paragraph.

We now give some intuition about the next lemma. Given any large alphabet

code (of alphabet size 2t) of rate R and relative distance δ = 1− O(γξ) for 0 < ξ ≤

γ/4 < 1/4, the following lemma shows that we can construct a binary code with

rate only a (1 − γ) factor away from the GV bound. Our approach is to once again

91

apply Thommesen’s concatenation directly to the large alphabet code. For simplicity,

suppose for now that the rate of the inner codes is chosen to be r = 1, so the rate

of the final code is R (For our local decoding algorithm we shall in fact require that

r is a sufficiently small constant, so that each inner code will be decodable from a

sufficiently large constant fraction of errors with high probability).

Now, if the distance δ of the outer code is very close to one, and we are interested

only in multiplicative approximation to the GV bound, then the upper bound given

in (4.1) on the probability that distance of final code is less than δ′ becomes roughly

2(1−δ)tn · 2−(1−H(δ′))tn, (4.2)

where the term 2(1−δ)tn comes from a union bound over all codewords, and the term

2−(1−H(δ′))tn is an upper bound on the probability that any particular codeword has

weight less than δ′. For (4.2) to be smaller than 1 we need to choose H(δ′) ≈ δ, and

so to get R ≈ 1−H(δ′) we need that δ ≈ 1−R, i.e., that outer code almost satisfies

the Singleton bound. In the lemma below the outer code is not sufficiently close to

the Singleton bound so the above union bound fails. For this we observe that one can

replace the term of 2(1−δ)tn in (4.2) by the smaller upper bound of 2Rtn on number of

codewords. Using this bound, we only need that R ≈ 1−H(δ′) for (4.2) to be smaller

than 1, and so we obtain the GV bound (up to multiplicative factor).

Lemma 4.4.1. The following holds for any 0 < γ < 1, 0 < ξ ≤ γ/4, integer t, and

sufficiently large n. Let C ⊆ Fn2t be a linear code of rate R and relative distance at

least δ = 1 − γ
6 · ξ. Let 0 < r < 1 be such that C ′ ⊆ Ft·n/r2 is a code obtained from

C by applying a random F2-linear transformation Ti : F2t → Ft/r2 on each coordinate

i ∈ [n] of C independently.

92

Suppose furthermore that

r ·R ≤
(

1−H
(1

2 − ξ
))

(1− γ).

Then C ′ has relative distance at least 1
2 − ξ with probability at least 1− exp(−n).

For the proof of the above lemma we shall use the Taylor expansion of the binary

entropy function at half. The formula follows easily from the Taylor expansion of

log(1 + x) at zero.

Fact 4.4.2. For any |x| ≤ 1 it holds that

H
(1 + x

2

)
= 1−

∞∑
k=1

x2k

(2k − 1) · 2k · ln 2 .

Additionally, we will use the following easy claim about the series above:

Claim 4.4.3. The following holds for any 0 < x, β < 1:

1−H
(

1 + x(1− β)
2

)
> (1− x)(1− β2)

[
1−H

(1 + x

2

)]

Proof of Claim 4.4.3. The following holds:

∞∑
k=1

(1− x)(1− β)2 · x2k

(2k − 1) · 2k · ln 2 <
(1− x)(1− β)2

2 ln 2 ·
∞∑
k=1

x2k

= x2(1− β)2

2 ln 2 · 1− x
1− x2 <

x2(1− β)2

2 ln 2

<
∞∑
k=1

[x(1− β)]2k
(2k − 1) · 2k · ln 2 . �

Proof of Lemma 4.4.1. Let N = tn/r. Fix a codeword c ∈ C, and note that wt(c) ≥

δ. Let c′ ∈ FN2 be a word obtained from c by applying a random linear transformation

Ti : F2t → Ft/r2 on each coordinate i ∈ [n] of c independently. Then for each non-zero

93

coordinate i of c it holds that the i-th block of c′ of length t/r is distributed uniformly

over Ft/r2 , and so at least δN coordinates of c′ are uniformly distributed.

Consequently it holds that

Pr
[
wt(c′) < 1

2 − ξ
]
≤

(1/2−ξ)N∑
i=0

(
δN

i

)
2−δN (4.3)

≤ 2−(1−H(1/2−ξ
δ))·δN .

By union bound over all codewords c ∈ C, recalling that |C| = 2tRn = 2RrN , the

above implies in turn that

Pr
[
distH(C ′) < 1

2 − ξ
]
≤ 2RrN · 2−(1−H(1/2−ξ

δ))·δN (4.4)

exp
{
−N

[
δ ·
(

1−H
(

1/2− ξ
δ

))
− r ·R

]}
.

So for distH(C ′) ≥ 1
2 − ξ to hold with probability at least 1− exp(−n) it suffices

to show that

(
1− ξγ

6

)
·
(

1−H
(

1/2− ξ
1− ξγ/6

))
> r ·R.

For this we use Claim 4.4.3 to compute

1−H
(

1/2− ξ
1− ξγ/6

)
≥ 1−H

(
(1/2− ξ) · (1 + ξγ/3)

)

≥ 1−H
(1

2 − ξ (1− γ/6)
)

> (1− 2ξ)
(

1− γ

6

)2
·
(

1−H
(1

2 − ξ
))

.

94

Consequently we have that

(
1− ξγ

6

)
·
(

1−H
(

1/2− ξ
1− ξγ/6

))

≥
(

1− ξγ

6

)
·
(

1− γ

6

)2
· (1− 2ξ) ·

(
1−H

(1
2 − ξ

))

>
(

1− γ

6 −
γ

3 − 2ξ
)
·
(

1−H
(1

2 − ξ
))

≥ (1− γ) ·
(

1−H
(1

2 − ξ
))

≥ r ·R,

where the third inequality follows by choice of ξ ≤ γ/4 and the fourth inequality

follows by choice of r ·R ≤
(
1−H

(
1
2 − ξ

))
(1− γ). �

4.5 LCCs approaching the GV bound

In this section we prove the following theorem which implies Theorem 4.1.2 from the

introduction.

Theorem 4.5.1 (LCCs approaching the GV bound). For any constants β, γ > 0

there exists a constant ξ0 = ξ0(β, γ), such that for any constant ξ > 0 which satisfy

that ξ ≤ ξ0 there exists an infinite family {C ′n}n of binary linear codes which satisfy

the following. The code C ′n has block length at least n, rate
(
1−H

(
1
2 − ξ

))
(1 −

γ), relative distance at least 1
2 − ξ, and is

(
nβ · poly(1/γ′), 1

2 · (
1
2 − ξ)− γ

′
)
-locally

correctable for any γ′ > 0.

Moreover, there is a randomized polynomial time algorithm which, given n, with

probability 1 − exp(−n), outputs a code of length n and a corrector with the above

properties,10 and the local testing algorithm runs in time poly(nβ, 1/γ′).
10It might return different codes and correctors under different random choices, we are only guar-

anteed that the output code and corrector will have the required properties with high probability.

95

4.5.1 Proof overview and main ingredients

For the proof of the above theorem we shall use Lemma 4.4.1 as well as the following

three lemmas.

The first lemma establishes (an alphabet independent) Johnson bound for list re-

covery. For a similar (alphabet dependent) statement and a proof sketch, we refer the

reader to Theorem 5 in [GS01]. For completeness we provide a simple combinatorial

proof of this lemma in Appendix 4.8, based on the proof of the Johnson bound for

list decoding given in [Gur06].

Lemma 4.5.2 (Johnson bound for list recovery). Let C ⊆ Σn be a code of relative

distance at least δ. Then C is (α, `, L)-list recoverable for any α < 1 −
√
` · (1− δ)

with L = δ`
(1−α)2−`(1−δ) .

The second lemma gives a local list recovery algorithm for Reed-Muller codes. The

algorithm is similar to the local list decoding algorithm for Reed-Muller codes from

[STV01], with an additional local testing procedure that guarantees the soundness

requirement in our definition of locally list recoverable codes, and is given in Section

4.6.

Lemma 4.5.3 (Local list recovery of Reed-Muller codes). There exists an absolute

constant c′ such that for any α, ε > 0 and integers m, d, q, ` which satisfy α < 1−c′·
√

`d
q

the Reed-Muller code RM(m, d, q) is
(
q̃, α, ε, `, L̃

)
-locally list recoverable with q̃ =

O(q2 · log(q/ε)) and L̃ = O(q log(1/ε)). Moreover, the local list recovery algorithm

can be implemented to run in poly(m, q, log(1/ε)) time.

Finally, we shall use the following lemma which gives a distance amplification pro-

cedure for local list recovery. This procedure is similar to the distance amplification

procedure for locally correctable codes from [KMRS17], and is given in Section 4.7.

On a high level, given a code Cout which is locally list-recoverable from a small

αout � 1 fraction of errors, and a small code Cin which is (globally) list-recoverable
96

from a large fraction of errors αin, they can be combined using AEL transformation

to get a new code C which is locally list-recoverable from almost αin fraction of errors

but doesn’t use many more queries than Cout, and other code parameters are not

significantly affected. Thus this procedure amplifies the distance from which we can

list-recover without significantly worsening other parameters.

Lemma 4.5.4 (Distance amplification for local list recovery). Suppose the codes Cout

and Cin exist with the following parameters:

• Cout is an F-linear code of block length nout, alphabet size σout, rate rout, and

relative distance δout that is (q, αout, ε, `out, Lout)-locally list recoverable.

• Cin is an F-linear code of block length nin, alphabet size σin, rate rin, and relative

distance δin that is (αin, `in, Lin)-(globally) list recoverable.

There exists a d = d(δout, αout, γ) = (1/δout + 1/αout + 1/γ)O(1) such that if the

parameters of Cout and Cin satisfy nin ≥ d, σout = σrin·ninin and Lin ≤ `out, then there

exists an F-linear code C of block length nout, alphabet size σninin , rate rin · rout and

relative distance at least δin−2γ that is (O(q ·n2
in · log(nin)), αin−γ, ε, `in, Lout)-locally

list recoverable.

Moreover,

• If the running time of the local list recovery algorithm for Cout is Tout and the

running time of the global list recovery algorithm for Cin is Tin then the running

time of the local list recovery algorithm for C is

O(Tout) +O(q · Tin) + poly(q, nin, `in).

97

• If the encoding times of Cout, Cin are T̂out, T̂in, respectively, then the encoding

time of C is

O(T̂out + nout · T̂in) + nout · poly(nin, log(nout)).

We will prove Lemma 4.5.4 in Section 4.7. We now provide a high-level overview

of the construction of the code C ′ := C ′n of Theorem 4.5.1.

Recall that our goal is to construct a code C ′ of relative distance 1/2 − ξ that

approximately satisfies the GV bound (up to multiplicative factor of 1 − γ), and

which additionally can be locally corrected from half its minimum distance. Via

the Guruswami-Indyk list decoding approach, the latter requirement is satisfied if

C ′ is locally list decodable from above half the minimum distance, say from 1/4

fraction of errors. Indeed, if this is the case then one can locally list decode C ′ to

obtain a short list of candidate codewords, then estimate the distance of each of these

codewords from the received word using a few more queries, and finally output the

local corrector that corresponds to the unique closest codeword. So it suffices to

construct a code C ′ of relative distance 1/2− ξ that approximately satisfies the GV

bound, and additionally is locally list decodable from 1/4 fraction of errors.

We shall construct the code C ′ by applying random concatenation on a carefully

designed outer code C. To this end, first observe that by Lemma 4.4.1 the code C ′ will

approximately satisfy the GV bound if the code C has reasonable rate vs. distance

tradeoff. Specifically, assuming that rate of inner codes is constant, we need C to

have relative distance 1−O(γξ) and rate θ(ξ2).

Next observe that in order for the concatenated code C ′ to be locally list decod-

able from 1/4 fraction of errors it suffices that (1) Most of the inner random codes

are globally list decodable from slightly more than 1/4 fraction of errors; and (2)

The outer code C is locally list recoverable from input lists of size equal to that of
98

output lists of inner codes (where a small constant fraction of these input lists may be

erroneous). Indeed, if this is the case then one can locally list decode C ′ by applying

the local algorithm that locally list recovers the outer code C, and answering each

of its queries by globally list decoding the corresponding inner code. On the other

hand, we do not care too much about the rates of outer and inner codes, as long as

they are constant, since we only want C ′ to have a small constant rate.

Now, by the Johnson bound for list recovery (Lemma 4.5.2), most of the inner

codes are list decodable from more than 1/4 fraction of errors with constant size

output lists if the rate of inner codes is a sufficiently small constant. So we are left

with the task of obtaining a code C of relative distance 1−O(γξ) and rate θ(ξ2) that

is locally list recoverable from constant size input lists and a small constant fraction

of errors.

One attempt to obtain such a code C may be to use a Reed-Muller code of

relative distance 1 − O(γξ) that is locally list recoverable using nβ queries. The

required distance can be guaranteed by picking the degree d to be O(γξ) · |F|, while

the required query complexity can be ensured by picking field size |F| and number of

variables m to be roughly nβ and 1/β, respectively (so we can locally list recover by

decoding on lines of size roughly nβ). However, such a code would have terrible rate

of the form (d/|F|)m ≈ (γξ)1/β � θ(ξ2).

To remedy the above situation we use a Reed-Muller code of higher rate and

lower distance and then amplify its distance using the AEL transformation (Lemma

4.5.4). Specifically, we apply this transformation with the outer code Cout being a

Reed-Muller code of constant relative distance that is locally list recoverable using

nβ queries (so d = O(|F|), |F| ≈ nβ, m ≈ 1/β)11. Thus Cout has rate 1/cβ for

some constant depending only on β. The inner code Cin on the other hand will be
11To obtain sublinear time decoding, in addition to sublinear query complexity, we will in fact

concatenate the Reed-Muller code with another Reed-Solomon code with appropriate parameters
to slightly reduce the alphabet size and enable fast brute force decoding of inner codes; See Section
4.5.2 for more details.

99

a Reed-Solomon code of rate cβ · θ(ξ2) and relative distance 1 − cβ · θ(ξ2). Lemma

4.5.4 then implies that the rate of C is the product of rates of Cout and Cin which is

θ(ξ2), and most importantly the code C inherits the relative distance of Cin which

is 1 − cβ · θ(ξ2) ≥ 1 − O(γξ) (where the latter inequality holds if ξ is chosen to be

sufficiently small compared to β and γ).

For completeness, we provide full details of the construction in Section 4.5.2. In

Section 4.5.3, we analyze the rate and relative distance of C ′. In Section 4.5.4, we

show that the code C ′ is locally list decodable from 1/4 fraction of errors. We then

use this property in Section 4.5.5 to show that C ′ is locally correctable from half the

GV bound. This shows that C ′ satisfies the local correction requirement.

4.5.2 Construction of C ′

In what follows we present the construction of the code C ′ := C ′n. To this end we

first set some parameters and then describe the construction of the codes Cin,Cout, C

and C ′. For better readability, in what follows we will denote each variable v that is

set to some absolute constant (independent of β, γ, ξ, γ′ and n) by v̂. In what follows

we will assume that nβ/4 is a sufficiently large power of 2.

Parameter setting. Let 1
4 < α̂0 <

1
2 be an arbitrary constant, and note that by the

Johnson bound for list decoding (Theorem 4.2.1) there exist a constant δ̂0 ∈ [0, 1/2)

and an integer L̂0 such that any binary code of relative distance at least δ̂0 is (α̂0, L̂0)-

list decodable. We will choose the parameters below so that the random binary codes

encoded by the Ti’s of Lemma 4.4.1 will have relative distance at least δ̂0 (with high

probability), and the code C will be locally list recoverable from input lists of size

L̂0 and sufficiently large constant fraction of errors. It will then follow that the final

code C ′ is locally list decodable from 1
4 fraction of errors and consequently locally

correctable from half the GV bound.

100

The code Cin. Choose an arbitrary constant 0 < α̂in < 1 such that α̂in · α̂0 >
1
4

(such α̂in exists since α̂0 >
1
4), and note that by the Johnson bound for list recovery

(Lemma 4.5.2) there exist a constant δ̂in ∈ (0, 1) and an integer L̂in such that any

code of relative distance at least δ̂in is (α̂in, L̂0, L̂in)-list recoverable.

Let σin ≥ nin be growing functions of n such that σninin = nβ/4 and σin is a power

of 2, and let δin = δin(β, γ, ξ) < 1 be a constant to be determined later on which

satisfies that δin ≥ δ̂in. Let Cin be a Reed-Solomon code of block length nin, alphabet

size σin, relative distance δin, and rate rin := 1 − δin. Then by the above discussion

the code Cin is (α̂in, L̂0, L̂in)-(globally) list recoverable in time poly(nβ) (via brute

force).12

The code Cout. The code Cout will be a concatenation of an outer Reed-Muller code

C ′out with an inner Reed-Solomon code C ′′out. The purpose of the concatenation step

is to reduce the alphabet size of the code Cout from nβ/4 to nrin·β/4, so that the code

C obtained by applying Lemma 4.5.4 on Cout and Cin (see Section 4.5.2 below) would

have alphabet size nβ/4 = o(n) (as opposed to nβ/(4rin) = ω(n)). This latter property

is needed in turn to ensure that the random inner codes used for the construction of

C ′ (see Section 4.5.2 below) will have nβ/4 different codewords each, and consequently

can be brute force list decoded in sublinear time.

We start by defining the inner Reed-Solomon code C ′′out. Choose an arbitrary

constant 0 < α̂′′out < 1, and note that by the Johnson bound for list recovery

(Lemma 4.5.2) there exist a constant δ̂′′out ∈ (0, 1) and an integer L̂′′out such that

any code of relative distance at least δ̂′′out is (α̂′′out, L̂in, L̂′′out)-list recoverable. Let

C ′′out be a Reed-Solomon code of relative distance δ̂′′out, rate r̂′′out := 1 − δ̂′′out, block

length 1/(rinr̂′′out) and alphabet size nrin·β/4. Then by the above the code C ′′out is

(α̂′′out, L̂in, L̂′′out)-(globally) list recoverable in time poly(nβ) (via brute force).
12We do not need to use Guruswami-Sudan’s list recovery algorithm for Reed-Solomon codes

because the running time of our final code will already have a poly(nβ) dependence due to the
increase in query complexity. See the running time of Lemma 4.5.4.

101

Next we define the outer Reed-Muller code C ′out. Choose an arbitrary constant

0 < α̂′out < 1, and note that by Lemma 4.5.3 there exists a constant δ̂′out ∈ (0, 1) such

that a Reed-Muller code of relative distance δ̂′out, block length n · rinr̂′′out and alphabet

size nβ/4 is (q′out, α̂′out, ε′out, `′out, L′out)-locally list recoverable for q′out = nβ/2polylogn,

ε′out = 1/n, `′out = L̂′′out, and L′out = nβ/4polylogn in time poly(nβ). Let C ′out be a

Reed-Muller code of block length n · rin · r̂′′out, alphabet size nβ/4, relative distance

δ̂′out, and rate r′out = r′out(β). Then the code C ′out is (q′out, α̂′out, ε′out, `′out, L′out)-locally

list recoverable in time poly(nβ).

Finally, let Cout be the code obtained by concatenating the outer Reed-Muller code

C ′out with the inner Reed-Solomon code C ′′out. Then it can be verified that Cout is an

F2-linear code of block length n, alphabet size nrin·β/4, relative distance δ̂′out · δ̂′′out, rate

r′out · r̂′′out, and in addition it is (qout, αout, εout, `out, Lout)-locally list recoverable with

qout = nβ/2polylogn, αout = α̂′out · α̂′′out, εout = 1
n
, `out = L̂in and Lout = nβ/4polylogn

in time poly(nβ) by emulating the local list recovery algorithm of C ′out in the natural

way.

The code C. Let C be the code guaranteed by invoking Lemma 4.5.4 with ξ = γ
24 ·ξ

for the codes Cout, Cin and d = d
(
δ̂′out · δ̂′′out, α̂′out · α̂′′out, γ24 · ξ

)
(note that nin ≥ d when

n is large enough, σout = σrin·ninin , and Lin = L̂in = `out). Then C is an F2-linear code of

block length n, alphabet size nβ/4, relative distance at least δin− γ
12 ·ξ, rate rin·r′out·r̂′′out,

and is (q, α, ε, `, L)-locally list recoverable with q = nβ/2polylogn, α = α̂in − γ
12 · ξ,

ε = 1
n
, ` = L̂0 and L = nβ/4polylogn in time poly(nβ).

The code C ′. Let t = log(nβ/4) and let r̂0 be a constant such that a random

binary linear code of rate r̂0 and block length t has relative distance at least δ̂0 with

probability at least 1 − exp(−t) (such r̂0 exists by Fact 4.2.3). Considering each

symbol of the code C as an element of F2t , let C ′ ⊆ Ft·n/r̂0
2 be a code obtained from

102

C by applying a random F2-linear transformation Ti : F2t → Ft/r̂0
2 on each coordinate

i ∈ [n] of C independently.

Choice of δin and ξ0. Finally, set

δin = δin(β, γ, ξ) = 1−

(
1−H

(
1
2 − ξ

))
(1− γ)

r′out · r̂′′out · r̂0
,

and note that δin can be chosen this way because Cin has super-constant block length

and alphabet size, and hence can attain any constant relative distance that is desired.

Also, set

ξ0 := min



1−δ̂in
5 · r′out · r̂′′out · r̂0,

γ
60 · r

′
out · r̂′′out · r̂0,

γ
4 ,

α̂in − 1
4α̂0
,

(4.5)

and note that ξ0 depends only on β and γ (recalling that r′out depends only on β).

Moreover, the choice of ξ0 ≤ 1−δ̂in
5 ·r′out · r̂′′out · r̂0 guarantees that δin ≥ δ̂in whenever

ξ ≤ ξ0, as required in Section 4.5.2. We additionally require that ξ0 ≤ γ
60 ·r

′
out · r̂′′out · r̂0

and ξ0 ≤ γ/4 so the code C will satisfy the requirements of our random concatenation

Lemma 4.4.1 (see Section 4.5.3), and that ξ0 ≤ αin − 1
4α̂0

for the code C to be list

recoverable from sufficiently large fraction of errors (see Section 4.5.4).

4.5.3 Rate and relative distance of C ′

We first show that C ′ has the desired rate and distance.

Claim 4.5.5. The code C ′ is a binary linear code of block length at least n and

rate
(
1−H

(
1
2 − ξ

))
(1 − γ). Moreover, C ′ has relative distance at least 1

2 − ξ with

probability 1− exp(−n) over the choice of the Ti’s.

103

Proof. By construction C ′ is a binary linear code of block length tn/r̂0 ≥ n and rate

rin · r′out · r̂′′out · r̂0 = (1− δin) · r′out · r̂′′out · r̂0

=
(

1−H
(1

2 − ξ
))

(1− γ).

To show that C ′ has the required distance we use Lemma 4.4.1. To see that the

conditions of this lemma hold note first that the relative distance of C is at least

δin −
γ

12 · ξ = 1−

(
1−H

(
1
2 − ξ

))
(1− γ)

r′out · r̂′′out · r̂0
− γ

12 · ξ

≥ 1− γ

6 · ξ,

where the inequality is by our choice of ξ0 ≤ γ
60 · r

′
out · r̂′′out · r̂0 in (4.5). Moreover, by

choice of ξ0 ≤ γ/4 in (4.5) we have that ξ ≤ γ/4. Thus Lemma 4.4.1 implies that C ′

has relative distance at least 1
2 − ξ with probability at least 1− exp(−n). �

4.5.4 Local list decoding of C ′

Next we show that C ′ can be locally list decoded from 1/4 fraction of errors.

Claim 4.5.6. The code C ′ is (q′, α′, ε′, L′)-locally list decodable for q′ = nβ/2·polylogn,

α′ = 1
4 , ε′ = 1

n
, and L′ = nβ/4 · polylogn with probability 1− exp(−n) over the choice

of the Ti’s. Moreover, the local list decoder of C ′ can be implemented to run in time

poly(nβ).

Proof. By construction the code C is (q, α, ε, `, L)-locally list recoverable with q =

nβ/2polylogn, α = α̂in− γ
12 · ξ, ε = 1

n
, ` = L̂0 and L = nβ/4polylogn in time poly(nβ),

where α̂in > 1
4α̂0

, and each Ti is (α̂0, L̂0)-list decodable with probability at least

1− exp(−t) = 1−on(1). The local list decoding algorithm A′ for C ′ will run the local

list recovery algorithm A for C and answer the queries of A by list decoding the Ti’s

corresponding to the queries of A. Details follow.
104

Let A be the algorithm that local list recovers C. On oracle access to w ∈ Ftn/r̂0
2

the algorithm A′ that local list decodes C ′ runs A and whenever A asks for some

coordinate i ∈ [n], the algorithm A′ list decodes the i-th block of w of length t/r̂0

from α̂0 fraction of errors, and feeds the messages corresponding to the L̂0 codewords

in the output list as an answer to the query of A. Let A1, . . . , AL be the resulting

output algorithms of A for L = nβ/4 · polylogn. Then A′ outputs L algorithms

A′1, . . . , A
′
L where each algorithm A′j is defined as follows

To decode the k′-th coordinate in the k-th block of C ′ of length t/r̂0, the algorithm

A′j runs the algorithm Aj on input coordinate k. As above, whenever Aj asks for some

coordinate i ∈ [n], the algorithm A′j list decodes the i-th block of w of length t/r̂0

from α̂0 fraction of errors, and feeds the messages corresponding to the L̂0 codewords

in the output list as an answer to the query of Aj. Let σ ∈ F2t be the output symbol

of Aj. Then the algorithm A′j outputs the k′-th bit of Tk(σ) ∈ Ft/r̂0
2 .

The query complexity of A′ is at most nβ/2 · polylogn · t = nβ/2 · polylogn, and

the output list size of A′ is nβ/4polylogn. Each block of w of length t/r̂0 can be

brute-force list decoded in time 2t/r̂0 = poly(nβ) and so the overall running time is

poly(nβ). The soundness property clearly holds.

To see that the completeness property holds as well note that if distH(w, c′) ≤ 1
4

for some c′ ∈ C ′, then by Markov’s inequality for at most 1/(4α̂0) fraction of i ∈ [n]

it holds that the i-th block of w of length t/r̂0 differs from the i-th block of c′ of

length t/r̂0 by more than α̂0 fraction of the coordinates. Moreover, since each Ti is

(α̂0, L̂0)-list decodable with probability at least 1 − on(1), with probability at least

1− exp(−n) it holds that at most ξ/2 fraction of the Ti’s do not have this property.

This implies in turn that the list decoding of the Ti’s fails on at most ξ/2 + 1/(4α̂0)

fraction of the blocks. The completeness then follows since C is locally list recoverable

from α̂in − γ
12 · ξ > ξ/2 + 1/(4α̂0) fraction of errors (where the inequality holds by

choice of ξ0 ≤ α̂in − 1/(4α̂0) in (4.5)) and input list size L̂0. �

105

4.5.5 Local correction of C ′

Finally, we show that the code C ′ is locally correctable from half the GV bound.

Claim 4.5.7. For any γ′ > 0 the code C ′ is
(
nβ · poly(1/γ′), 1

2 · (
1
2 − ξ)− γ

′
)
-locally

correctable with probability 1 − exp(−n) over the choice of the Ti’s. Moreover, the

local corrector of C ′ can be implemented to run in time poly(nβ, 1/γ′).

Proof. By claims 4.5.5 and 4.5.6 we have that C ′ has relative distance at least 1
2−ξ and

in addition it is (q′, α′, ε′, L′)-locally list decodable for q′ = nβ/2 ·polylogn, α′ = 1
4 , ε′ =

1
n
, and L′ = nβ/4 ·polylogn in time poly(nβ) with probability at least 1−exp(−n) over

the choice of the Ti’s. In what follows assume that these two properties hold, we will

show that in this case C ′ is also
(
nβ · poly(1/γ′), 1

2 · (
1
2 − ξ)− γ

′
)
-locally correctable

in time poly(nβ, 1/γ′) for any γ′ > 0.

Let A′ be the algorithm that local list decodes C ′. By increasing the query com-

plexity of A′ by a multiplicative factor of polylogn we may assume that both the

completeness and soundness properties of A′ hold with success probability 1 − 1
n2

instead of 2
3 . On oracle access to w ∈ Ftn/r̂0

2 and input coordinate i ∈ [tn/r̂0], the

algorithm Ã that local corrects C ′ first runs A′ with oracle access to w, let A′1, . . . , A′L

be the output algorithms for L = nβ/4polylogn. The algorithm Ã then runs each of

the A′j’s on a random subset Sj ⊆ [tn/r̂0] of coordinates of size O(log n/(γ′)2), and

computes the fraction of coordinates δj in Sj on which the decoded values differ from

the values of w. Finally, the algorithm Ã finds some A′j for which δj ≤ 1
2 · (

1
2 − ξ) (if

such A′j exists), and uses A′j to decode the input coordinate i.

The query complexity of Ã is

nβ/4 · polylogn ·O(log n/(γ′)2) · nβ/2 · polylogn ·O(log n),

where the first factor of nβ/4polylogn comes from the number of codewords in the

list, which is at most nβ · poly(1/γ′) for sufficiently large n, and the running time
106

of Ã is poly(nβ, 1/γ′). Next we show that Ã satisfies the required local correction

guarantees.

Let c′ ∈ C ′ be the (unique) codeword which satisfies that distH(w, c′) ≤ 1
2 ·(

1
2 − ξ

)
− γ′. We shall show below that with probability 1− o(1), there exists some

A′j that computes c′ and satisfies that δj ≤ 1
2 ·
(

1
2 − ξ

)
, and on the other hand, any

A′j which does not compute c′ satisfies that δj > 1
2 ·
(

1
2 − ξ

)
. This will imply in turn

that the algorithm Ã will succeed in decoding the input coordinate with probability

1− o(1) ≥ 2
3 as required.

We first show that with probability at least 1− 3
n

there exists some A′j that com-

putes c′ and satisfies that δj ≤ 1
2 ·
(

1
2 − ξ

)
. To see this note that by the completeness

property of A′ and since distH(w, c′) ≤ 1
4 , with probability at least 1− 1

n
over the ran-

domness of A′ there exists some A′j that computes c′. In this case, by union bound

with probability at least 1 − 1
n

it holds that each decoded coordinate of A′j in Sj

equals to the corresponding coordinate in c′. Furthermore, by Chernoff bound with

probability at least 1 − 1
n

it holds that w and c′ differ on Sj by at most 1
2 ·
(

1
2 − ξ

)
fraction of the coordinates. Consequently, with probability at least 1− 3

n
it holds that

δj ≤ 1
2 ·
(

1
2 − ξ

)
.

Next we show that with probability at least 1− 3
n
, any A′j which does not compute

c′ satisfies that δj > 1
2 ·
(

1
2 − ξ

)
. For this note that by the soundness property of A′,

with probability at least 1 − 1
n

over the randomness of A′, for every such A′j there

exists a codeword c̃ ∈ C ′ \ {c′} such that A′j computes c̃. As above, by union bound

this implies in turn that with probability at least 1 − 1
n

it holds that each decoded

coordinate of A′j in Sj equals to the corresponding coordinate on c̃. On the other

hand, since C ′ has relative distance at least 1
2 − ξ and distH(w, c′) ≤ 1

2 ·
(

1
2 − ξ

)
− γ′

we have that distH(w, c̃) > 1
2 ·
(

1
2 − ξ

)
+γ′, and so by Chernoff bound with probability

at least 1− 1
n

it holds that w and c̃ differ on Sj by more than 1
2 ·
(

1
2 − ξ

)
fraction of the

107

coordinates. Consequently, with probability at least 1− 3
n

it holds that δj > 1
2 ·
(

1
2 − ξ

)
for any such A′j which completes the proof of the claim.

�

4.6 Local list recovery of Reed-Muller codes

In this section we prove Lemma 4.5.3 which we recall here.

Lemma 4.5.3 (Local list recovery of Reed-Muller codes). There exists an absolute

constant c′ such that for any α, ε > 0 and integers m, d, q, ` which satisfy α < 1−c′·
√

`d
q

the Reed-Muller code RM(m, d, q) is
(
q̃, α, ε, `, L̃

)
-locally list recoverable with q̃ =

O(q2 · log(q/ε)) and L̃ = O(q log(1/ε)). Moreover, the local list recovery algorithm

can be implemented to run in poly(m, q, log(1/ε)) time.

For the proof of the above lemma we shall need the following two lemmas. The

first lemma from [GS92] gives a local correction procedure for Reed-Muller codes (see.

e.g., Proposition 2.6. in [Yek12]).

Lemma 4.6.1 (Local correction of Reed-Muller codes). There exists an absolute

constant r0 > 0 such that for any integers m, d, q which satisfy that d
q
≤ r0 the Reed-

Muller code RM(m, d, q) is
(
q, 1

4

)
-locally correctable.

In other words, there exists a randomized q-query algorithm Corr such that given

oracle access to a function f : Fmq → Fq which agrees with a degree d polynomial

p : Fmq → Fq on at least 3/4 fraction of inputs, and given x ∈ Fmq ,

Pr[Corrf (x) = p(x)] ≥ 2
3 ,

where the probability is over the internal randomness of Corr. Moreover Corr runs in

poly(m, q) time.

108

The second lemma gives a tolerant local testing procedure for Reed-Muller codes.

A tolerant local testing algorithm is a local testing algorithm that has the additional

property of accepting all words which are sufficiently close to the code. Formally it

is defined as follows.

Definition 4.6.2. Let 0 < α < α′ < 1. We say that a code C ⊆ Σn is (q, α, α′)-

tolerant locally testable if there exists a randomized algorithm A that satisfies the

following requirements:

• Input: A gets oracle access to a string w ∈ Σn.

• Query complexity: A makes at most q queries to the oracle w.

• Completeness: If distH(w,C) ≤ α, then A accepts with probability at least 2
3 .

• Soundness: If distH(w,C) ≥ α′, then A rejects with probability at least 2
3 .

Lemma 4.6.3 (Tolerant local testing of Reed-Muller codes). There exist absolute

constants r0 > 0 and 0 < α0 < 1/4 such that for any integers m, d, q which satisfy that
d
q
≤ r0 the Reed-Muller code RM(m, d, q) is (O(q), α0, 1/4)-tolerant locally testable.

Moreover the running time of the tester is poly(m, q).

The proof of the above lemma is based on the robust local testing procedure for

Reed-Muller codes from [FS95], and is deferred to Section 4.6.2. As an anonymous

reviewer has pointed out, it is not necessary to use tolerant testing here. We can use

a not necessarily tolerant tester to get local list recovery as in Lemma 4.5.3 but with

a worse query complexity.

4.6.1 Proof of Lemma 4.5.3

The proof follows the lines of the algorithm for the local list decoding of Reed-Muller

codes from [STV01], we need an additional local testing procedure that guarantees the

109

soundness requirement in our definition of locally list recoverable codes (Definition

4.2.6). Let S : Fmq →
(
Fq
`

)
. We would like to construct a list of oracle algorithms which

compute all codewords p : Fmq → Fq such that p(x) ∈ S(x) for at least β := 1 − α

fraction of x ∈ Fmq . Moreover every oracle algorithm in the list should compute some

codeword. Now we describe an algorithm for this task. We will begin by defining the

following (deterministic) sub-algorithm which will be used in the main algorithm.

The algorithm receives as parameters β ∈ [0, 1], z ∈ Fmq and a ∈ Fq.

Algorithm 1MS
z,a,β(x) given input x ∈ Fmq

1: Let uz,x(t) = (1− t)z + tx denote the line through the points z, x. 13

2: Find the list h1, · · · , hr that includes all univariate degree d polynomials p : Fq →

Fq such that p(t) ∈ S(uz,x(t)) for at least β/2 fraction of t ∈ Fq.

3: If there exists a unique i such that hi(0) = a, then output hi(1), else output

‘FAIL’.

The parameters z, a in Algorithm 1 must be thought of as advice which tells us

that the polynomial takes the value a ∈ F at the point z ∈ Fmq . The following claim

makes this intuition precise.

Claim 4.6.4. Let 0 < τ < 1, 1 ≥ β ≥ 16
τ

√
`d/q, and let p : Fmq → Fq be a degree d

polynomial which agrees with S in at least β fraction of inputs, then the following are

true.

1. MS
z,a,β makes at most q queries to S and runs in poly(m, q) time.

2. Prz
[
Prx

[
MS

z,p(z),β computes p at x
]
≥ 1− τ

]
≥ 1

2 .

Proof. The number of queries is q since the algorithm only queries points on a line.

Also Step 2 of the algorithm, which is the most expensive step, can be implemented
13If z = x, choose a random line through z.

110

in poly(m, q) time by Theorem 4.2.2. Now we will prove (2). By Markov inequality,

Pr
z

[
Pr
x

[
MS

z,p(z),β does not compute p at x
]
≥ τ

]
≤ 1
τ

Pr
z,x

[
MS

z,p(z),β does not compute p at x
]
.

To bound the probability that MS
z,p(z),β does not compute p at x, let us define the

following two bad events and bound their probabilities.

Event A: @i ∈ [r] s.t. hi = p|uz,x

This will happen only if p does not agree with S on at least β/2 fraction of points

on the line uz,x. But we know that p has agreement at least β with S on the entire

space. Since z, x are uniformly random, the set of points on the line uz,x are pairwise

independent. So we can use Chebychev’s inequality to bound the probability of this

event. Let X1, . . . , Xq be indicator random variables where Xi = 1 iff p agrees with

S on the ith point of the line uz,x. Let µ be the fraction of points where p agrees with

S, we know that E[Xi] = µ ≥ β and Var(Xi) ≤ E[Xi].

Pr[A] = Pr[@i ∈ [r] s.t. hi = p|uz,x]

≤ Pr
[∑

iXi

q
≤ β

2

]

≤ Pr
[∑

iXi

q
≤ µ

2

]

≤ Pr
[∣∣∣∣∣
∑
iXi

q
− µ

∣∣∣∣∣ ≤ µ

2

]

≤ 4Var(X1)
qµ2 ≤ 4

qµ

≤ 4
qβ
≤ τ

4
√
`dq
≤ τ

4 .

Event B: ∃i ∈ [r] s.t. hi 6= p|uz,x and hi(0) = p(z)

Since the list of polynomials h1, · · · , hr depends only on the line through z, x, we can

think of the random process as first picking a random line u and then picking two

111

random points t1, t2 ∈ Fq and letting z = u(t1), x = u(t2). If hi 6= p|u, then they agree

on at most d points of u, so Prt1 [hi(t1) = p(u(t1))] ≤ d
q
. By union bound,

Pr[B] = Pr
[
∃i ∈ [r] s.t. hi 6= p|uz,x and hi(0) = p(z)

]
≤ rd

q
.

By applying the Johnson bound for list recovery (Lemma 4.5.2) to the Reed-Solomon

code of degree d on the line u ,

r ≤ `

(β/2)2 − `d/q
≤ q/d

(8/τ)2 − 1 .

Combining the above bounds we get,

Pr[B] ≤ 1/((8/τ)2 − 1) ≤ τ/8.

Clearly, if events A,B do not happen, thenMS
z,p(z),β will compute p at x. Therefore

Pr
z,x

[
MS

z,p(z),β does not compute p at x
]

≤ Pr[A] + Pr[B] ≤ τ

2 .

Therefore,

Pr
z

[
Pr
x

[
MS

z,p(z),β does not compute p at x
]
≥ τ

]
≤ 1

2 .

�

112

Algorithm 2 Local list recovery algorithm R(S, β)
1: Sample z1, · · · , zt ∈ Fmq uniformly at random where t = log(2/ε).

2: Let L be the list of all oracle algorithms MS
zi,a,β

for i ∈ [t] and a ∈ F.

3: Run the tolerant local tester T from Lemma 4.6.3 on each algorithm in L for

t′ = 100 log(2qt/ε) times and remove from L any algorithm which fails a majority

of the tests.14

4: For every M ∈ L, include the oracle algorithm CorrM in the output list where

Corr is the corrector from Lemma 4.6.1.

The following claim essentially proves Lemma 4.5.3.

Claim 4.6.5. Let 1 ≥ β > c′
√
`d/q where c′ is some sufficiently large absolute con-

stant. Let Lout be the list of oracle algorithms output by R(S, β). Then the following

statements are true.

1. The size of the list |Lout| = O(q log(1/ε)).

2. The algorithm R(S, β) makes at most O(q2 log(q/ε)) queries to oracle S and

runs in poly(m, q, log(1/ε)) time.

3. Each algorithm in Lout makes at most q2 queries to S and runs in poly(m, q)

time.

4. Let p : Fmq → Fq be a degree d polynomial which agrees with S on at least β

fraction of inputs, then with probability at least 1 − ε, there exists A ∈ Lout

which computes p.

5. With probability at least 1− ε, every A ∈ Lout computes some degree d polyno-

mial.
14As an anonymous reviewer has pointed out, it is not necessary to use tolerant testing here. For

each M ∈ L in Step 3, we could run a (not necessarily tolerant) tester on CorrM and if it accepts,
then we add CorrCorrM

in final output list. We use a tolerant tester because it is more natural here
and gives better query complexity.

113

Proof. (1) is trivially true since the list only gets smaller after Step 2 and at the end

of Step 2 we have at most t · q = O(q log(1/ε)) algorithms in the list. To prove (2),

note that R makes queries to S only in Step 3. By Lemma 4.6.3, the tester T makes

O(q) queries to each algorithm MS
zi,a,β

∈ L, and each algorithm MS
zi,a,β

makes at

most q queries to S as in Algorithm 1. Since the test is repeated t′ = O(log(q/ε))

times, the total queries to S is O(q2 log(q/ε)). To analyze the running time, note that

the tester T and the algorithms MS
zi,a,β

run in poly(m, q) time, so the total running

time is poly(m, q, log(1/ε)).

To prove (3), note that every algorithm in Lout looks like CorrM for some M

constructed in Step 2. By Lemma 4.6.1, Corr makes q queries to M, and on each of

them, eachM makes q queries to S as in Algorithm 1. Thus the total queries CorrM

makes to S on any input is at most q2. Also both Corr and M run in poly(m, q)

time, thus CorrM also takes poly(m, q) time.

To prove (4), observe thatMS
z1,p(z1), · · · ,MS

zt,p(zt) are in the list L. Let 0 < α0 <
1
4

be the constant that appears in Lemma 4.6.3 and let c′ > 16
α0

. By Claim 4.6.4, with

probability ≥ 1 − 1/2t = 1 − ε/2, at least one of these algorithms agree with p on

≥ 1 − α0 fraction of inputs, call this algorithm M. Therefore M will also pass the

local testing in Step 3 with probability 1− ε/2 by Lemma 4.6.3 and Chernoff bound.

Since α0 <
1
4 , by Lemma 4.6.1, CorrM will compute p everywhere.

Finally to prove (5), by Lemma 4.6.3 and Chernoff bound, any A ∈ L that is 1/4

far from any degree d polynomial will remain in the list after Step 3 with probability

at most ε
tq

. By union bound over each algorithm in the list which is of size at most

tq, with probability at least 1 − ε, every algorithm A in L that remains after Step

3, will be 1
4 close to some degree d polynomial p′. So by Lemma 4.6.1, CorrA will

compute p′ everywhere. Therefore every algorithm in Lout computes some degree d

polynomial.

�

114

4.6.2 Tolerant local testing of Reed-Muller codes - Proof of

Lemma 4.6.3

For the proof of lemma 4.6.3 we shall use the following lemma from [FS95, Theorem

7] which gives a robust local testing procedure for Reed-Muller code. A robust local

testing algorithm is a local testing algorithm such that its local view on words far

from the code is far on average from an accepting view.

Lemma 4.6.6 (Robust local testing of Reed-Muller codes). There exists an absolute

constant r0 > 0 such that the following holds for any α > 0 and integers m, d, q which

satisfy that d
q
≤ r0. Suppose that f : Fmq → Fq satisfies that distH (f,RM(m, d, q)) ≥

α. Then the expected relative distance of f from RSq(d, q) on a random line is at

least α
9 .

Proof of Lemma 4.6.3. Say we are given a function f : Fmq → Fq and we need to test

if it is close to a degree d polynomial. Let 0 < τ < 1 −
√
d/q be some threshold

parameter to be chosen later. The test is to choose a random line u in Fmq and find if

there is a univariate degree d polynomial which is τ -close to f |u. If yes, then accept,

else reject. Clearly this test makes only q queries. Also by Theorem 4.2.2, when

τ < 1 −
√
d/q, this can be implemented in poly(m, q) time. Now we will show that

for an appropriate choice of τ , this is a (O(q), α0, 1/4) tolerant test for some α0 > 0.

Let f : Fmq → Fq be some function which is α0-close to a degree d polynomial

p. Since points on a random line are uniform over Fmq , by Markov inequality, the

probability that f |u is τ -far from any univariate degree d polynomial is at most α0/τ .

So the probability that the test rejects f is at most β0 = α0/τ .

Let g : Fmq → Fq be some function which is 1/4-far from any degree d polynomial.

Then by Lemma 4.6.6, the expected distance of g|u to RSq(d, q) is at least 1/36.

The probability that g|u is τ -far from RSq(d, q) is at least β1 = 1/36−τ
1−τ . When d/q is

115

sufficiently small, we can choose α0 and τ to be some absolute constants such that

0 < τ < 1−
√
d/q and β0 < β1.

Finally to get the acceptance and rejection probabilities to 2/3 as in the definition

of tolerant locally testable codes, we repeat the above t times and accept a function

if it is accepted in at least β0+β1
2 fraction of the tests. When t is large enough (but

still some absolute constant), by Chernoff bound, the new test will have the required

soundness and completeness.

�

4.7 Distance amplification for local list recovery

In this section we prove Lemma 4.5.4 which we recall here.

Lemma 4.5.4 (Distance amplification for local list recovery). Suppose the codes Cout

and Cin exist with the following parameters:

• Cout is an F-linear code of block length nout, alphabet size σout, rate rout, and

relative distance δout that is (q, αout, ε, `out, Lout)-locally list recoverable.

• Cin is an F-linear code of block length nin, alphabet size σin, rate rin, and relative

distance δin that is (αin, `in, Lin)-(globally) list recoverable.

There exists a d = d(δout, αout, γ) = (1/δout + 1/αout + 1/γ)O(1) such that if the

parameters of Cout and Cin satisfy nin ≥ d, σout = σrin·ninin and Lin ≤ `out, then there

exists an F-linear code C of block length nout, alphabet size σninin , rate rin · rout and

relative distance at least δin−2γ that is (O(q ·n2
in · log(nin)), αin−γ, ε, `in, Lout)-locally

list recoverable.

Moreover,

• If the running time of the local list recovery algorithm for Cout is Tout and the

running time of the global list recovery algorithm for Cin is Tin then the running
116

time of the local list recovery algorithm for C is

O(Tout) +O(q · Tin) + poly(q, nin, `in).

• If the encoding times of Cout, Cin are T̂out, T̂in, respectively, then the encoding

time of C is

O(T̂out + nout · T̂in) + nout · poly(nin, log(nout)).

The construction of the code C and analysis closely follow that of the high rate

locally correctable codes from [KMRS17].

One important ingredient in our construction will be a family of bipartite ex-

panders which have the property of being good samplers. We define samplers below

and state a lemma (very closely related to that from [KMRS17]) showing the existence

of the kind of samplers we will need.

For a graph G, a vertex s and a set of vertices T , let E(s, T) denote the set of

edges that go from s into T . Roughly speaking, a sampler is a bipartite d-regular

graph in which the density of any subset T of right vertices can be approximated by

the value of E(s, T)/d for a uniform random left vertex s.

Definition 4.7.1. Let G = (U ∪ V,E) be a bipartite d-regular graph with |U | = |V | =

n. We say that G is an (α, γ)-sampler if the following holds for every T ⊆ V : For at

least 1− α fraction of the vertices s ∈ U it holds that

|E(s, T)|
d

− |T |
n
≤ γ.

Lemma 4.7.2. For every α, γ > 0, there exists d̂ = poly(1
αγ

) such that for ev-

ery sufficiently large n and for every d > d̂ there exists a bipartite d-regular graph

Gn,d,α,γ = (U ∪ V,E) with |U | = |V | = n such that Gn,d,α,γ is an (α, γ)-sampler. Fur-
117

thermore, there exists an algorithm that takes as inputs n, d, α, γ and a vertex w of

Gn,d,α,γ, and computes the list of the neighbors of w in Gn,d,α,γ in time poly(logn·d
α·γ).

The proof of the lemma above follows the outline presented in [KMRS15, Section

2.4] and we omit the details here. The only difference from [KMRS15] is that here

we require the degree to be any d > d̂, whereas in [KMRS15] it was constructed for

specific d = poly
(

1
α·γ

)
. However it is easy to see that the proof can be modified to

make it work for larger degrees as well, by first constructing an (α, γ/2) sampler for

a pretty large degree and then adding matchings to the graph to get the required

degree and not hurting the sampling property too much.

With these samplers in hand, we are now ready to prove the lemma. We begin

with a high level overview of the proof:

Proof overview Given a code Cout which is locally list-recoverable from a small

αout � 1 fraction of errors, and a small code Cin which is (globally) list-recoverable

from a large fraction of errors αin, they can be combined using AEL transformation

to get a new code C which is locally list-recoverable from almost αin fraction of errors

but doesn’t use many more queries than Cout, and other code parameters are not

significantly affected. Thus this procedure amplifies the distance from which we can

list-recover without significantly worsening other parameters.

The AEL transformation works as follows: Given a codeword cout ∈ Cout, we

encode each symbol of cout using an inner code Cin which is (globally) list recoverable

from a large fraction αin of errors. Now suppose we have errors in αin− γ fraction of

places which are randomly chosen, then by Chernoff bounds, we can say that almost

all (except for at most αout fraction) the inner encodings will have at most αin fraction

of errors. So we can list recover most of the inner encodings (except for at most αout

fraction). Finally, we can list recover Cout from αout fraction of errors. Since we

are interested in locally list recovering Cout, we only need to list recover those inner

118

encodings which are queried by the the local list recovering algorithm for Cout. Thus

we will not lose much in locality, as long as the length of the inner encodings are

small.

But we need to deal with adversarial errors, not random. They can completely

wipe αin fraction of inner encodings. To overcome this problem, we use samplers. The

final effect of this will be to reduce adversarial errors to random looking errors which

we know how to deal with. We will choose the degree of the regular bipartite graph

(sampler) to be equal the length of the inner code. We associate each inner encoding

with a left vertex of the graph and distribute its symbols to each of the neighbors.

The right vertices collect these symbols from their neighbors and repackage them as

one symbol over a larger alphabet. This will be the final codeword which will have

same length as Cout but over a larger alphabet. The property of the sampler will

ensure that whenever αin−γ fraction of symbols in the final codeword are corrupted,

then after undoing the permutation of the sampler, almost all (except for at most

αout fraction) the inner encodings will have at most αin fraction of symbols errors,

and now we proceed as before.

Proof of Lemma 4.5.4. First, we describe the construction of the code C using the

samplers above.

Construction of code C We construct C by giving a bijection from Cout to C. Let

Σout,Σin denote the alphabets of Cout, Cin respectively. Given a codeword cout ∈ Cout,

one obtains the corresponding codeword c ∈ C as follows:

• View each codeword symbol in Σout as a vector of length rin · nin over Σin and

encode it via the code Cin. Each codeword symbol gets mapped to a string in

Σnin
in . We denote the resulting string by c′ ∈ Σnin·nout

in and the various resulting

codewords of Cin by B1, B2, . . . Bnout ∈ Σnin
in .

119

• Next, we apply a “pseudorandom” permutation to the coordinates of c′

as follows: Let Gnout be a graph from the infinite family of nin-regular

(min{αout, δout/2}, γ) samplers above and let U = {u1, . . . , unout} and

V = {v1, . . . , vnout} be the left and right vertices of Gnout respectively. For each

i ∈ [nout] and j ∈ [nin], we write the j-th symbol of Bi on the j-th edge of

ui. Then, we construct new blocks D1, . . . , Dnout ∈ Σnin
in , by setting the j-th

symbol of Di to be the symbol written on the j-th edge of vi. We reinterpret

each of these blocks to be a symbol of the new alphabet Σ def= Σnin
in .

• Finally, we define the codeword c of C ⊆ Σnout as follows: the i-th coordinate

ci is the block Di, reinterpreted as a symbol of the alphabet Σ. We choose c to

be the codeword in C that corresponds to the codeword cout in Cout.

This completes the definition of the bijection. It follows that C is an F-linear code

of blocklength nout and alphabet size σninin . The rate of C is

log |C|
nout · log |Σ| = log |Cout|

nout · nin · log |Σin|

= rout · nout · log |Σout|
nout · nin · log |Σin|

= rout · log |Σout|
nin · log |Σin|

= rout · rin · nin · log |Σin|
nin · log |Σin|

= rout · rin.

It remains to show that the relative distance of C is at least δin−2γ and that C is

(q̃, α, ε, `, L)-locally list recoverable for q̃ = O(q · n2
in · log(nin)), α = αin − γ, ` = `in,

and L = Lout.

Once we prove the portion of the theorem that shows that C is (O(q · n2
in ·

log(nin)), αin − γ, ε, `in, Lout)-locally list recoverable, it will follow almost in a black-

box manner that the relative distance of C is at least δin−2γ for the following reason.
120

Notice that it will suffice to show that C can be uniquely decoded from δin
2 −γ fraction

of errors. Since Cin has relative distance at least δin, Cin can be uniquely decoded

from δin
2 fraction of errors and in other words Cin is (δin/2, 1, 1)-(globally) list recov-

erable. Also Cout can be uniquely decoded from δout
2 fraction of errors and is hence

trivially (nout, δout/2, 0, 1, 1)-locally list recoverable.

Thus by the same construction (i.e same choice of samplers), the code C is (O(nout·

n2
in · log(nin)), δin/2− γ, 0, 1, 1)-locally list recoverable. In other words C is uniquely

decodable from δin/2 − γ fraction of errors and hence has relative distance at least

δin − 2γ.

We now prove that C is (O(q ·n2
in · log(nin)), αin− γ, ε, `in, Lout)-locally list recov-

erable.

Local list recoverability We will now describe the (O(q · n2
in · log(nin)), αin −

γ, ε, `in, Lout)-local list recovery algorithm A for the code C. This is based on the

following algorithm A which locally list recovers coordinates of Cout (instead of coor-

dinates of C, as required of A).

Lemma 4.7.3. There exists a randomized algorithm Ã that on oracle access to an

S ∈
(

Σ
`in

)nout makes at most O(q ·nin · log(nin)) queries to S and outputs a list of Lout

randomized algorithms Ã1, ..., ÃLout which satisfy the following:

• Each Ãj takes as input coordinate i ∈ [nout] and also gets oracle access to the

tuple S. Ãj makes at most O(q ·nin · log(nin)) queries to S and outputs a symbol

ÃSj (i) ∈ Σout.

• (Completeness) For each cout ∈ Cout such that the corresponding codeword c of C

(as given by the bijection above) satisfies distH(c, S) ≤ αin− γ, with probability

at least 1 − ε over the randomness of Ã, there exists some j ∈ [Lout] such that

PrÃj
[
ÃSj (i) = couti

]
≥ 1− 1

3nin for all i ∈ [n].

121

• (Soundness) With probability at least 1− ε over the randomness of Ã, for every

j ∈ [Lout], there exists some cout ∈ Cout such that PrÃj
[
ÃSj (i) = couti

]
≥ 1− 1

3nin

for all i ∈ [n].

Given such an algorithm Ã guaranteed by Lemma 4.7.3, we show how to construct

the required algorithm A. The algorithm A is given oracle access to an S ∈
(

Σ
`in

)nout ,
and needs to locally list recover all codewords c ∈ C that “disagree” with S in at

most αin − γ fraction of coordinates. A outputs a list of Lout randomized algorithms

A1, ..., ALout which work as follows.

Each Aj takes as input a coordinate i ∈ [nout] and also gets oracle access to the tu-

ple S. Note that by the above lemma, with probability at least 1−ε over the random-

ness of Ã, for each Ãj there exists some cout ∈ Cout such that PrÃj
[
ÃSj (i) = couti

]
≥

1− 1
3nin for all i ∈ [n]. Let the corresponding codeword in C be c. We will use Ãj to

design Aj that will output the coordinates of c. Let B1, . . . , Bnout and D1, . . . , Dnout

be the corresponding blocks that arise in the construction of c from cout. In order for

Aj(i) to be able to decode the value of ci, it should be able to correctly decode all

the symbols in the block Di. Let ui1 , . . . , uinin be the neighbors of vi in the graph

Gnout . Each symbol of Di belongs to one of the blocks Bi1 , . . . , Binin
, and therefore

it suffices to retrieve these blocks. Each of these blocks Bij is the encoding of coutij
(the ijth symbol of cout) via the code Cin. Thus to recover Bi1 , . . . , Binin

, it suffices

to recover couti1 , . . . , coutinin . The algorithm Aj invokes the algorithm Ãj to recover

each of couti1 , . . . , coutinin , and by the union bound, it recovers all of them correctly

with probability at least 1− nin · 1
3nin = 2/3. Whenever this happens, the algorithm

Aj correctly retrieves the blocks Bi1 , . . . , Binin
and hence also Di and hence ci.

Clearly the query complexity of Aj is nin times the query complexity of Ãj, and is

hence at most O(q · n2
in · log(nin)). The completeness and soundness of A follow from

the completeness and soundness of Ã.

122

It can be verified that the local list recovery algorithms Ã and A can be imple-

mented efficiently as required by the “moreover” part of the lemma.

�

We now prove Lemma 4.7.3.

Proof of Lemma 4.7.3. Let Ā be the local list recovery algorithm for Cout. Ā is a

randomized algorithm that on oracle access to a tuple S ∈
(

Σout
`out

)nout outputs a list of

Lout randomized algorithms Ā1, Ā2, . . . , ĀLout . By amplification we may assume that

for each i ∈ [nout], Āj(i) errs with probability at most 1
3·nin , and this incurs a factor

of at most O(log(nin)) to its query complexity. Thus the query complexity is at most

O(q · log(nin)).

We now describe Ã. Suppose the algorithm Ã is invoked on a tuple S =

(S1, . . . , Snout) ∈
(

Σ
`in

)nout , the algorithm Ã invokes the algorithm Ā and emulates Ā

in the natural way. Recall that Ā expects to be given a tuple S̄ ∈
(

Σout
`out

)nout . On input

coordinate i, Ā makes queries to this sequence and outputs a value Ā(i). For any

k ∈ [nout], whenever Ā queries the kth element of the sequence S̄1, . . . , S̄nout ∈
(

Σout
`out

)
,

the algorithm Ã performs the following steps.

1. In the first step, for each coordinate r ∈ [nin] of Bk, Ã will find a list S(k,r) ∈(
Σin
`in

)
and associate that list with the rth coordinate of Bk. The list S(k,r) is

defined as follows: Suppose that vkr is the rth neighbor of the vertex uk in Gnout .

Suppose that uk is the r̂th neighbor of the vertex vkr . Then in the construction

of the codeword c from cout, the value of the rth coordinate of Bk is stored in

the r̂th coordinate of Dkr . Now Skr ∈
(

Σ
`in

)
=
(

Σninin
`in

)
is the input list associated

with the krth coordinate. Note that each element s ∈ Skr can be viewed as an

nin-tuple of elements from Σin. Let the r̂th element of this tuple be s(r̂). Then

S(k,r) is defined to be the set in
(

Σin
`in

)
obtained by taking the r̂th element of

123

each member of the set Skr . Ã can find this set by making a single query to the

krth element of S to obtain Skr , and from it find S(k,r).

2. Ã then invokes the global-list recovery algorithm for Cin with the lists S(k,r)

for each r ∈ [nin]. The output of this algorithm is a list of size at most Lin

with elements from Σnin
in . We denote by S̄k the set of messages in Σrinnin

in = Σout

corresponding to the codewords in this list. This is what Ã feeds to Ā.

It is not hard to see that the query complexity of Ã is at most nin times the

query complexity of Ā, and hence it is at most O(q · nin · log(nin)). It remains to

show that Ã satisfies the completeness and soundness requirements. We first show

the completeness.

Completeness: Let cout ∈ Cout be such that the corresponding codeword c of C

(as given by the bijection above) satisfies distH(c, S) ≤ αin − γ. From the following

claim, completeness of Ã will follows from the completeness of Ā.

Claim 4.7.4. The tuple S̄ := (S̄1, S̄2, . . . , S̄nout) as defined above satisfies

distH(cout, S̄) ≤ αout.

Proof. Let T = {k ∈ [nout] | ck 6∈ Sk}. Then we know that |T | ≤ (αin − γ)nout. Let

Good be the set of all i ∈ [nout] such that in the graph Gnout , ui has at most αin

fraction of its neighbors vj with j ∈ T . By the sampling property of Gnout , it holds

that |Good| ≥ (1− αout) · nout.

We will now show that for all k ∈ Good, coutk ∈ S̄k. Since |Good| ≥ (1−αout) ·nout,

this shows that distH(cout, S̄) ≤ αout and thus proves the claim.

Let k ∈ Good. For each r ∈ [nin], let S(k,r) ∈
(

Σin
`in

)
be the set assigned to the rth

coordinate of Bk (as described above). To show that coutk ∈ S̄k, it suffices to show

that the encoding of coutk via the code Cin (which we call Bk) agrees with various

124

S(k,r) for at least 1 − αin fraction of coordinates r ∈ [nin], since then the global list

recovery algorithm of Cin succeeds in outputting coutk .

Now let r be any coordinate such that the rth neighbor of uk in Gnout is a vertex

vkr where kr 6∈ T . Thus ckr ∈ Skr . Hence, by the definition of S(k,r), it holds that the

rth coordinate of Bk agrees with S(k,r). Since at most αin fraction of the r’s could

have been such that kr ∈ T , thus for at least 1−αin fraction of coordinates r ∈ [nin],

Bk agrees with S(k,r), and hence coutk ∈ S̄k.

�

Soundness: The soundness of Ã follows from the soundness of Ā. This is because

for any S ∈
(

Σ
`in

)nout and i ∈ Lout, algorithm ÃSi behaves exactly like ĀS̄i where S̄ is

as defined above, in particular they have the same output. But we know that, with

probability ≥ 1− ε over the randomness of Ā, each algorithm ĀS̄i output by the list

recovery algorithm ĀS̄ computes some cout ∈ Cout. Thus with probability ≥ 1 − ε,

each ÃSi also computes some codeword in Cout.

�

4.8 Johnson Bound for List Recovery

In this section we prove Lemma 4.5.2 restated below.

Lemma 4.5.2 (Johnson bound for list recovery). Let C ⊆ Σn be a code of relative

distance at least δ. Then C is (α, `, L)-list recoverable for any α < 1 −
√
` · (1− δ)

with L = δ`
(1−α)2−`(1−δ) .

Proof. The proof is a simple adaptation of the proof of the Johnson bound for list

decoding from [Gur06, Theorem 3.3].

Let |Σ| = q, let S ∈
(

Σ
`

)n
be a tuple, and let N := {c ∈ C | distH(c, S) ≤ α}. Our

goal will be to show that L =| N |≤ δ`
(1−α)2−`(1−δ) . As the minimum relative distance

125

of the code C is δ and each c ∈ N has relative distance at most α from the tuple S,

we have

δ ≤ E
{x,y}∼(N2)

[
∆(x,y)

n

]
and α ≥ ε := E

x∼N
i∼[n]

[1xi 6∈Si] . (4.6)

Let x,y be two distinct words in N , chosen uniformly at random. We will obtain

a lower bound on the expected fraction of coordinates where x and y agree (in terms

of L, α and `). We know that this expectation is at most 1 − δ. The theorem will

follow by comparing these two quantities.

For i ∈ [n], and z ∈ Σ, let

ki(z) = |{x ∈ N | xi = z}|.

Then we have that

Pr
{x,y}∼(N2)

[xi = yi] =
(
L

2

)−1

·
∑
z∈Σ

(
ki(z)

2

)

=
(
L

2

)−1

·

∑
z∈Si

(
ki(z)

2

)
+

∑
z∈Σ\Si

(
ki(z)

2

)
≥
(
L

2

)−1

·
[
` ·
(
ki
2

)
+ (q − `)

(
L−`ki
q−`
2

)]

where ki = 1
`
·
∑
z∈Si

ki(z) and we used Jensen’s inequality.

Hence, the expected fraction of coordinates where x and y agree is bounded by

1
n
·
n∑
i=1

Pr
{x,y}∼(N2)

[xi = yi]

≥ 1
n
·
(
L

2

)−1

·
n∑
i=1

[
` ·
(
ki
2

)
+ (q − `)

(
L−`ki
q−`
2

)]

≥
(
L

2

)−1

·
[
` ·
(
t

2

)
+ (q − `)

(
L−t`
q−`
2

)]

126

where t = 1
n
·
n∑
i=1

ki and we again used Jensen’s inequality. Since the left hand side is

bounded from above by 1− δ, after some rearrangement, we have:

(1− δ) ·
(
L

2

)
≥ ` ·

(
t

2

)
+ (q − `)

(
L−t`
q−`
2

)
(4.7)

Since ε is the expected fraction of disagreement between the words in N and S,

we have that Lnε is the total amount of disagreement between N and S. We can

also count the amount of disagreement in the following way: `ki = ∑
z∈Si ki(z) is the

amount of agreement between the words of N and the input list Si. Hence, the total

agreement between the words of N and S is ∑n
i=1 `ki = t`n. This implies that the

total disagreement is Ln− t`n = Lnε. Thus, we obtain that t`
L

= 1− ε.

Substituting t`

L
= 1− ε in equation (4.7), and rearranging terms, we have

(1− δ) · L(L− 1)
2 ≥ ` · t(t− 1)

2 + (L− t`)(L− t`− q + `)
2(q − `)

= `t2

2 −
`t

2 + (L− t`)2

2(q − `) −
L− t`

2

= (1− ε)2L2

2` − (1− ε)L
2 + (Lε)2

2(q − `) −
Lε

2 ,

which gives

(1− δ) · (L− 1) ≥ (1− ε)2

`
L− (1− ε) + ε

(
εL

q − `
− 1

)

= (1− ε)2

`
L+ ε2L

q − `
− 1.

127

By grouping the terms with L and rearranging the inequality above, we get that

L ≤ δ

(1− ε)2

`
+ ε2

q − `
− (1− δ)

= δ`

(1− ε)2 + `ε2

q − `
− `(1− δ)

≤ δ`

(1− ε)2 − `(1− δ) ≤
δ`

(1− α)2 − `(1− δ) ,

where the last inequality follows since ε ≥ α. �

128

Chapter 5

LDCs from Outlaw distributions

5.1 Introduction

Despite their many applications, our knowledge of LDCs is very limited; the best-

known constructions are far from what is currently known about their limits. Al-

though standard random (linear) ECCs do allow for some weak local-decodability,

they are outperformed by even the earliest explicit constructions [KS07]. All the

known constructions of LDCs were obtained by explicitly designing such codes using

some algebraic objects like low-degree polynomials or matching vectors [Yek12].

In this paper, we give a characterization of LDCs in probabilistic and geometric

terms, making them amenable to probabilistic constructions. On the flip side, these

characterizations might also be easier to work with for the purpose of showing lower

bounds. We will make this precise in the next section.

5.1.1 LDCs from distributions over smooth Boolean func-

tions

Our main result shows that LDCs can be obtained from “outlaw” distributions over

“smooth” functions. The term outlaw refers to the Law of Large Numbers, which says

129

that the average of independent samples tends to the expectation of the distribution

from which they are drawn. Roughly speaking, a probability distribution is an outlaw

if many samples are needed for a good estimation of the expectation and a smooth

function over the n-dimensional Boolean hypercube is one that has no influential

variables. Paradoxically, while many instances of the probabilistic method use the

fact that sample means of a small number of independent random variables tend to

concentrate around the true mean, as captured for example by the Chernoff bound,

our main result requires precisely the opposite. We show that if at least k samples from

a distribution over smooth functions are needed to approximate the mean, then there

exists an O(1)-query LDC sending {0, 1}Ω(k) to {0, 1}n, where the hidden constants

depend only the smoothness and mean-estimation parameters.

To make this precise, we now formally define smooth functions and outlaw dis-

tributions. Given a function f : {−1, 1}n → R, its spectral norm (also known as the

algebra norm or Wiener norm) is defined as

‖f‖A =
∑
S⊂[n]

|f̂(S)|,

where f̂(S) are the Fourier coefficients of f (see Section 5.2.1 for basics on Fourier

analysis). Note that ‖f‖A = ‖f̂‖`1 . By Young’s inequality for convolutions, it follows

that for any f, g,

‖fg‖A ≤ ‖f‖A ‖g‖A ,

which justifies the term Algebra norm. We also consider the supremum norm,

‖f‖L∞ = sup{|f(x)| : x ∈ {−1, 1}n}. It follows from the Fourier inversion

formula that ‖f‖L∞ ≤ ‖f‖A. The ith discrete derivative of f is the function

(Dif)(x) = (f(x) − f(xi))/2, where xi is the point that differs from x on the ith

coordinate. The Fourier expansion of Dif is given by Dif(x) = ∑
S3i f̂(S)χS(x).

130

Hence it follows that

‖Dif‖A =
∑
S3i

∣∣∣f̂(S)
∣∣∣ .

Smooth functions are functions whose discrete derivatives have small spectral norms.

Definition 5.1.1 (σ-smooth functions). For σ > 0, a function f : {−1, 1}n → R is

σ-smooth, if for every i ∈ [n], we have ‖Dif‖A ≤ σ/n.

Intuition for the above definition may be gained from the fact that smooth func-

tions have no influential variables. The influences, (Ex∈{−1,1}n [(Dif)(x)2])1/2, measure

the extent to which changing the ith coordinate of a randomly chosen point changes

the value of f . Since ‖Dif‖L∞ ≤ ‖Dif‖A, the directional derivatives of σ-smooth

functions are uniformly bounded by σ/n, which is a much stronger condition than

saying that the derivatives are small on average. Outlaws are defined as follows.

Definition 5.1.2 (Outlaw). Let n be a positive integer and µ be a probability distri-

bution over real-valued functions on {−1, 1}n. For a positive integer k and ε > 0, say

that µ is a (k, ε)-outlaw if for independent random µ-distributed functions f1, . . . , fk

and f̄ = Eµ[f],

E
[∥∥∥∥1
k

k∑
i=1

(fi − f̄)
∥∥∥∥
L∞

]
≥ ε.

Denote by κµ(ε) the largest integer k such that µ is a (k, ε)-outlaw.

To approximate the true mean of an outlaw µ to within ε on average in the L∞-

distance, one thus needs κµ(ε) + 1 samples. Note that if µ is a distribution over

σ-smooth functions, then the distribution µ̃ obtained by scaling functions in the

support of µ by 1/σ is a distribution over 1-smooth functions and κµ̃(ε/σ) = κµ(ε).

Our main result is then as follows.

Theorem 5.1.3 (Main theorem). Let n be a positive integer and ε > 0. Let µ be a

probability distribution over 1-smooth functions on {−1, 1}n and k = κµ(ε). Then,

there exists a (q, δ, η)-LDC sending {0, 1}l to {0, 1}n where l = Ω(ε2k/ log(1/ε)),
131

q = O(1/ε), δ = Ω(ε) and η = Ω(ε). Additionally, if µ is supported on degree-d

functions, then we can take q = d.

Note that the smoothness requirement is essential. For example the uniform

distribution over the n dictator functions fi(x) = xi for i ∈ [n] is an (n/2, 1)-outlaw,

but it cannot imply constant rate, constant query LDCs which we know do not exist.

In fact we establish a converse to Theorem 5.1.3, showing that its hypothesis is

essentially equivalent to the existence of LDCs in the small query complexity regime.

Theorem 5.1.4. If C : {0, 1}k → {0, 1}n is a (q, δ, η)-LDC, then there exists a

probability distribution µ over 1-smooth degree-q functions on {−1, 1}n such that

κµ(ε) ≥ (η/2)k

where ε = ηδ/(2q2q/2).

Theorem 5.1.4 can in turn convert the problem of proving lower bounds on the

length of LDCs to a problem in Banach space geometry. In particular, for a distri-

bution µ over 1-smooth degree-q functions on {0, 1}n, one can upper bound κµ(ε) in

terms of type constants of the space of q-linear forms on `n+1
q [Bri16].

Candidate outlaws One scenario in which outlaw distributions can be obtained

is using incidence geometry in finite fields. In particular, the following result can be

derived from our main theorem (stated a bit informally here, see Section 5.5.1 for the

formal version).

Corollary 5.1.5. Let p > 2 be a fixed prime. Suppose that for a random set of

directions D ⊂ Fnp of size |D| ≤ k, with probability at least 1/2, there exists a set

B ⊂ Fnp of size |B| ≥ Ω(pn) which does not contain any lines with direction in D.

Then, there exists a p-query LDC sending {0, 1}Ω(k) to {0, 1}pn.

132

The assumption in Corollary 5.1.5 that D be random is essential for it to be po-

tentially interesting for LDCs. If we instead ask that every set of directions D satisfies

the condition—as we did in the conference version of this paper—then letting D be

a subspace shows that k must be smaller than a constant depending only on p and ε

by Szemerédi’s Theorem (Theorem 5.5.2 below) [Fox17].

The analogue of Corollary 5.1.5 in Z/NZ where lines correspond to arithmetic

progressions and directions correspond to common differences can also be used to

construct LDCs. This question was studied in [FLW16a], where they show that if

D is a random subset of Z/NZ of size ω(N1−1/p), then almost surely every dense

subset of Z/NZ contains a p-term arithmetic progression with common difference in

D. Our main result, together with the best-known lower bounds on LDCs show that

the bound of [FLW16a] can be improved to ω̃(N1−1/(dp/2e−1)).

Another setting in which our approach leads to interesting open problems is in

relation to pseudorandom hypergraphs. Consider a partition of the complete bipartite

graph Kn,n into n perfect matchings. It is known that picking k = O(log n) of these

matchings at random will give us a pseudorandom (expander) graph (of degree k). For

some particular partitions (e.g., given by an Abelian group) this bound is tight. The

questions arising from our approach can be briefly summarized as follows: Can one

find an n-vertex hypergraph H (say three uniform to be precise) and a partition of H

into matchings so that, to get a pseudorandom hypergraph (defined appropriately)

one needs at least k random matchings. This would give a code sending Ω(k)-bit

messages with encoding length O(n) and so, becomes interesting when k is super

poly-logarithmic in n. We elaborate on this in Section 5.5.2

5.1.2 Techniques

Our proof of Theorem 5.1.3 proceeds in two steps. The first step consists of turning an

outlaw over smooth functions into a seemingly crude type of LDC that is only required

133

to work on average over a uniformly distributed message and a uniformly distributed

message index. We call such codes average-case smooth codes (see Section 2.3.2). The

second step consists of showing that such codes are in fact not much weaker than

honest LDCs.

From outlaws to average-case smooth codes The key ingredient for the first

step is symmetrization, a basic technique from high-dimensional probability. We

briefly sketch how this is used (we refer to Section 5.3 for the full proof). Suppose

that f1, . . . , fk are independent smooth functions distributed according to a (k, ε)-

outlaw with expectation f̄ . We introduce an independent copy1 f ′i of fi for each

i ∈ [k] and consider the symmetrically distributed random functions fi − f ′i . Since

f̄ = E[f ′i] for each i ∈ [k], Jensen’s inequality and Definition 5.1.2 imply that

E
[
‖(f1 − f ′1) + · · ·+ (fk − f ′k)‖L∞

]
≥ E

[
‖(f1 − E[f ′1]) + · · ·+ (fk − E[f ′k)‖L∞

]
≥ εk.

Since the random functions fi − f ′i are independent and symmetric, we get that for

independent uniformly random signs x1, . . . , xk ∈ {−1, 1}, the above left-hand side

equals

E
[
‖x1(f1 − f ′1) + · · ·+ xk(fk − f ′k)‖L∞

]
.

The triangle inequality and the Averaging Principle then give that there exist fixed

smooth functions f ?1 , . . . , f ?k such that on average over the random signs, we have

E
[
‖x1f

?
1 + · · ·+ xkf

?
k‖L∞

]
≥ εk/2. (5.1)

To get an average-case smooth code out of this, we view each sequence x = (x1, . . . , xk)

as a k-bit message and choose an arbitrary n-bit string for which the L∞-norm in (5.1)

is achieved to be the its encoding, C(x). This gives a map C : {−1, 1}k → {0, 1}n

1in this context sometimes referred to as a “ghost copy” as it will later disappear again

134

satisfying

E
[
x1f

?
1 (C(x)) + · · ·xkf ?k (C(x))

]
≥ εk/2.

Equivalently, for uniform x and i, we have Pr[f ?i (C(x)) = xi] ≥ 1
2 + ε

4 . Finally,

we use the smoothness property to transform the f ?i into decoders with the desired

properties. This is done in Section 5.3. It is in the application of the Averaging

Principle where the probabilistic method appears in our construction of LDCs.

Average-case smooth codes are LDCs Our second step in the proof of The-

orem 5.1.3 is an average-case to worst-case reduction showing that smooth LDCs

which only work on average i.e. for a random message and random decoding bit,

can be converted into smooth LDCs that work for every message and every decoding

bit. See Section 2.3.2 for the relevant definitions and Theorem 2.3.7 showing such a

reduction. Combining it with Proposition 2.3.5 to convert the resulting smooth LDC

into an LDC, we get the following lemma.

Lemma 5.1.6. Let C : {0, 1}k → {0, 1}n be a (q, c, η)-average-case smooth code.

Then, there exists an (q,Ω(η/cq),Ω(η))-LDC sending {0, 1}l to {0, 1}n where l =

Ω(η2k/ log(1/η)).

5.1.3 Organization

In Section 5.3, we prove our main theorem (Theorem 5.1.3) by first showing that out-

law distributions over smooth functions imply existence of average-case smooth codes

and using Lemma 5.1.6 to convert them to LDCs. In Section 5.4, we show the con-

verse to our main theorem (Theorem 5.1.4) showing how to get outlaw distributions

over smooth functions from LDCs. Finally in Section 5.5, we give some candidate

constructions of outlaw distributions over smooth functions using incidence geometry

and hypergraph pseudorandomness.

135

5.2 Preliminaries

5.2.1 Fourier analysis on the Boolean cube

We recall a few basic definitions and facts from Fourier analysis over the n-dimensional

Boolean hypercube {−1, 1}n. Equipped with the coordinate-wise multiplication op-

eration, the hypercube forms an Abelian group whose group of characters is formed

by the functions χS(x) = ∏
i∈S xi for all S ⊆ [n]. The characters form a complete

orthonormal basis for the space of real-valued functions on {−1, 1}n endowed with the

inner product 〈f, g〉 = Ex∈{−1,1}n [f(x)g(x)], where we use the notation Ea∈S to denote

the expectation with respect to a uniformly distributed element a over a set S. The

Fourier transform of a function f : {−1, 1}n → R is the function f̂ : 2[n] → R defined

by f̂(S) = 〈f, χS〉. The Fourier inversion formula (which follows from orthonormality

of the character functions) asserts that

f =
∑
S⊆[n]

f̂(S)χS.

Parseval’s Identity relates the L2-norms of f and its Fourier transform by

(
Ex∈{−1,1}n [f(x)2]

)1/2
=
(∑
S⊆[n]

|f̂(S)|2
)1/2

.

A function f has degree q if f̂(S) = 0 when |S| > q and the degree-q truncation of f ,

denoted f≤q, is the degree-q function defined by

f≤q =
∑
|S|≤q

f̂(S)χS.

A function f is a q-junta if it depends only on a subset of q of its variables, or

equivalently, if there exists a subset T ⊆ [n] of size |T | ≤ q such that f̂(S) = 0 for

136

every S 6⊆ T . The ith discrete derivative Dif is the function

(Dif)(x) = f(x)− f(x(i))
2 ,

where x(i) is the point that differs from x on the ith coordinate. It is easy to show

that the ith discrete derivative in of a function f is given by

Dif =
∑
S3i

f̂(S)χS.

5.3 From outlaws to average-case smooth codes

In this section we prove Theorem 5.1.3. For convenience, in the remainder of this

paper, we switch the message and codeword alphabets of all codes from {0, 1}n to

{−1, 1}n. We begin by showing that outlaw distributions over degree-q functions give

q-query average-case smooth codes. Combined with Lemma 5.1.6, this implies the

second part of Theorem 5.1.3.

Theorem 5.3.1. Let µ be a probability distribution on 1-smooth degree-q functions on

{−1, 1}n, let ε ∈ (0, 1] and let k = κµ(ε). Then, there exists a (q, 1/q, ε/2)-average-

case smooth code sending {−1, 1}k to {−1, 1}n.

Proof. The proof uses a symmetrization argument. Let F = (f1, . . . , fk) and F ′ =

(f ′1, . . . , f ′k) be two k-tuples of independent µ-distributed random variables and let

f̄ = Eµ[f]. Then, by definition of κµ(ε) and Jensen’s inequality,

ε ≤ EF
[∥∥∥∥1
k

k∑
i=1

(fi − f̄)
∥∥∥∥
L∞

]

= EF
[∥∥∥∥1
k

k∑
i=1

(
fi − EF ′ [f ′i]

)∥∥∥∥
L∞

]

≤ EF ,F ′
[∥∥∥∥1
k

k∑
i=1

(fi − f ′i)
∥∥∥∥
L∞

]
.

137

The random variables fi− f ′i are symmetrically distributed, which is to say that they

have the same distribution as their negations f ′i − fi. Since they are independent, it

follows that for every x ∈ {−1, 1}k, the random variable x1(f1−f ′1)+ · · ·+xk(fk−f ′k)

has the same distribution as (f1 − f ′1) + · · ·+ (fk − f ′k). Therefore,

EF ,F ′
[∥∥∥∥1
k

k∑
i=1

(fi − f ′i)
∥∥∥∥
L∞

]
= Ex∈{−1,1}k

[
EF ,F ′

[∥∥∥∥1
k

k∑
i=1

xi(fi − f ′i)
∥∥∥∥
L∞

]]

≤ 2EF
[
Ex∈{−1,1}k

[∥∥∥∥1
k

k∑
i=1

xifi

∥∥∥∥
L∞

]]
.

Applying the Averaging Principle to the outer expectation, we find that there exist

1-smooth degree-q functions f ?1 , . . . , f ?k : {−1, 1}n → R such that

Ex∈{−1,1}k

[∥∥∥∥1
k

k∑
i=1

xif
?
i

∥∥∥∥
L∞

]
≥ ε

2 . (5.2)

Define the code C : {−1, 1}k → {−1, 1}n such that for each x ∈ {−1, 1}k, we have

1
k

k∑
i=1

xif
?
i (C(x)) =

∥∥∥∥1
k

k∑
i=1

xif
?
i

∥∥∥∥
L∞

. (5.3)

For each i ∈ [k], define the decoder Ai as follows. Let νi : 2[n] → [0, 1] be

the probability distribution defined by νi(S) = |f̂ ?i (S)|/ ‖f ?i ‖A. Given a string z ∈

{−1, 1}n, with probability 1 − ‖f ?i ‖A, the decoder Ai returns a uniformly random

sign, and with probability ‖f ?i ‖A, it samples a set S ⊆ [n] according to νi and returns

χS(z). This is a valid probability distribution since for any 1-smooth function f , we

have

‖f‖A =
∑
S⊂[n]

|f̂(S)| ≤
∑
S⊂[n]

|S||f̂(S)| =
n∑
i=1

∑
S3i
|f̂(S)| ≤ n · 1

n
= 1.

Then, Ai queries at most q coordinates of z and since f ?i is 1-smooth, the probability

that it queries any coordinate j ∈ [n] is at most ‖Djf
?
i ‖A ≤ 1/n. Since the queries

can be presented in a random order, the probability that tth query is j is ≤ 1/qn. We

138

also have E[Ai(z)] = f ?i (z). Therefore, by (5.2) and (5.3), we have

Ex∈{−1,1}k,i∈[k] [Pr[xi = Ai(C(x))]] = 1
2 + 1

2Ex∈{−1,1}k,i∈[k] [xiE[Ai(C(x))]]

= 1
2 + 1

2Ex∈{−1,1}k,i∈[k] [xif ?i (C(x))]

= 1
2 + 1

2Ex∈{−1,1}k

[∥∥∥∥1
k

k∑
i=1

xif
?
i

∥∥∥∥
L∞

]

≥ 1
2 + ε

4 .

Hence, C is a (q, 1/q, ε/2)-average-case smooth code. �

The final step before the proof of Theorem 5.1.3 is to show that for any distribu-

tion µ over smooth functions, there exists a distribution µ̃ over smooth functions of

bounded degree that is not much more concentrated than µ.

Lemma 5.3.2. Let µ be a probability distribution over 1-smooth functions and let

ε > 0. Then, there exists a probability distribution µ̃ over 1-smooth functions of

degree q = 4/ε such that κµ̃(ε/2) ≥ κµ(ε).

Proof. We first establish that smooth functions have low-degree approximations in

the supremum norm. If f : {−1, 1}n → R is 1-smooth, then

q
∑
|S|>q
|f̂(S)| ≤

∑
S⊂[n]

|S||f̂(S)| =
n∑
i=1

∑
S3i
|f̂(S)| =

n∑
i=1
‖Dif‖A ≤ 1.

It follows that the degree-q truncation f≤q satisfies

∥∥∥f − f≤q∥∥∥
L∞
≤

∑
|S|>q
|f̂(S)| ≤ 1

q
= ε

4 . (5.4)

139

Define µ̃ as follows: sample f according to µ and output f≤q. Clearly, µ̃ is also a

distribution over 1-smooth functions. For k = κµ(ε), we have

Ef1,...,fk∼µ

[∥∥∥∥1
k

k∑
i=1

(
fi − E[fi]

)∥∥∥∥
L∞

]
≥ ε.

Hence, by the triangle inequality and (5.4), we have

Ef1,...,fk∼µ̃

[∥∥∥∥1
k

k∑
i=1

(
fi − E[fi]

)∥∥∥∥
L∞

]
≥ ε

2 ,

giving the claim. �

Proof of Theorem 5.1.3. By applying Lemma 5.3.2 to µ, we get a distribution µ̃ over

1-smooth degree q = O(1/ε) functions with k′ = κµ̃(ε/2) ≥ κµ(ε) = k. By Theo-

rem 5.3.1, we get a (q, 1/q,Ω(ε))-average-case smooth code C ′ : {−1, 1}k′ → {−1, 1}n.

Finally we use Lemma 5.1.6 to convert C ′ to a (q,Ω(ε),Ω(ε))-LDC C : {−1, 1}` →

{−1, 1}n where ` = Ω(ε2k′/ log(1/ε)). For the last part of the theorem we can simply

apply Theorem 5.3.1 directly. �

5.4 From LDCs to outlaws

In this section we prove Theorem 5.1.4, the converse of our main result.

Proof of Theorem 5.1.4. By Proposition 2.3.5, the map C : {−1, 1}k → {−1, 1}n is

also a (q, 1/δ, η)-smooth code. For each i ∈ [k], let Bi be its decoder for the ith index.

Let νi : 2[n] → [0, 1] be the probability distribution used by Bi to sample a set S ⊆ [n]

of at most q coordinates and let fi,S : {−1, 1}n → [−1, 1] be function whose value at

y ∈ {−1, 1}n is the expectation of the random sign returned by Bi(y) conditioned on

the event that it samples S. Since this value depends only on the coordinates in S,

the function fi,S is a q-junta.

140

Fix an i ∈ [k] and let fi : {−1, 1}n → [−1, 1] be the function given by fi =

ES∼νi [fi,S]. Then, since a q-junta has degree at most q, so does fi. We claim that fi

is δ/(q2q/2)-smooth. Since the functions fi,S : {−1, 1}n → {−1, 1} are q-juntas, it

follows from Parseval’s identity that they have spectral norm at most 2q/2. Moreover,

for each j ∈ [n], we have PrS∼νi [j ∈ S] ≤ q/(δn). Hence, since fi,S depends only on

the coordinates in S, we have

‖Djfi‖A ≤
∑
S3j

νi(S) ‖fi,S‖A ≤
q2q/2
δn

,

which gives the claim. By (2.3), it holds for every x ∈ {−1, 1}k and every i ∈ [k] that

xifi
(
C ′(x)

)
≥ η. (5.5)

Define the distribution µ to correspond to the process of sampling i ∈ [k] uniformly

at random and returning fi. Let ḡ = (f1 + · · · + fk)/k be the mean of µ. We show

that κµ(η/2) ≥ ηk/2. To this end, let l = ηk/2, let σ : [l] → [k] be an arbitrary

map and define the functions g1, . . . , gl by gi = fσ(i). Let x ∈ {−1, 1}k be such that

for each i ∈ [l], we have xσ(i) = 1 and xj = −1 elsewhere. It follows from (5.5) that

fσ(i)
(
C(x)

)
∈ [η, 1] for every i ∈ [l] and that fi

(
C(x)

)
≤ 0 for every other i ∈ [k].

Hence,

∥∥∥∥1
l

l∑
i=1

(gi − ḡ)
∥∥∥∥
L∞

≥
(1
l

l∑
i=1

(gi − ḡ)
)(
C(x)

)

= 1
l

l∑
i=1

fσ(i)
(
C(x)

)
− 1
k

k∑
i=1

fi
(
C(x)

)
≥ η − l

k
= η/2.

141

If σ maps each element in [l] to a uniformly random element in [k], then g1, . . . , gl are

independent, µ-distributed and satisfy

E
[∥∥∥∥1
l

l∑
i=1

(gi − ḡ)
∥∥∥∥
L∞

]
≥ η/2,

which shows that κµ(η/2) ≥ l. Finally we can scale all the functions in µ to make them

1-smooth, and get a distribution µ̃ over 1-smooth functions with κµ̃(ηδ/(2q2q/2)) ≥

ηk/2. �

5.5 Candidate outlaws

In this section we elaborate on the candidate outlaws mentioned in the introduction.

5.5.1 Incidence geometry

We begin by describing a variant of Corollary 5.1.5 based on a slightly different

assumption and show conditions under which this assumption holds. Let p be an

odd prime, let Fp be a finite field with p elements and let n be a positive integer.

For x, y ∈ Fnp , the line with origin x in direction y, denoted `x,y, is the sequence

(x+ λy)λ∈Fp . A line is nontrivial if y 6= 0.

Corollary 5.5.1. For every odd prime p and ε ∈ (0, 1], there exist a positive integer

n1(p, ε) and a c = c(p, ε) ∈ (0, 1/2] such that the following holds. Let n ≥ n1(p, ε)

and k be positive integers. Assume that for independent uniformly distributed elements

z1, . . . , zk ∈ Fnp , with probability at least 1/2, there exists a set B ⊆ Fnp of size εpn

such that every nontrivial line through the set {z1, . . . , zk} contains at most p − 2

points of B. Then, there exists a (p − 1, c, c)-LDC sending {0, 1}l to {0, 1}pn, where

l = Ω(c2k/ log(1/c)).

142

The proof uses the following version of Szemerédi’s Theorem [Tao12, Theo-

rem 1.5.4] and its standard “Varnavides-type” corollary (see for example [TV06,

Exercise 10.1.9]).

Theorem 5.5.2 (Szemerédi’s theorem). For every odd prime p and any ε ∈ (0, 1],

there exists a positive integer n0(p, ε) such that the following holds. Let n ≥ n0(p, ε)

and let S ⊆ Fnp be a set of size |S| ≥ εpn. Then, S contains a nontrivial line.

Corollary 5.5.3. For every odd prime p and any ε ∈ (0, 1], there exists a positive

integer n1(p, ε) and a c(p, ε) ∈ (0, 1] such that the following holds. Let n ≥ n1(p, ε)

and let S ⊆ Fnp be a set of size |S| ≥ εpn. Then, S contains at least c(p, ε)p2n

nontrivial lines, that is,

Pr
x∈Fnp ,y∈Fnpr{0}

[
{(x+ λy)p−1

λ=0} ⊂ S
]
≥ c(p, ε).

Proof of Corollary 5.5.1. Abusing notation, we identify functions f : Fnp → {−1, 1}

with vectors in {−1, 1}Fnp . Let φ : {−1, 1} → {0, 1} be the map φ(α) = (α+1)/2. For

a function f : Fnp → {−1, 1}, let φ(f) : Fnp → {0, 1} be the function φ(f)(x) = φ(f(x))

and for f : Fnp → {0, 1}, define φ−1(f) : Fnp → {−1, 1} analogously.

For every x ∈ Fnp , let Fx : {−1, 1}Fnp → R be the degree-(p− 1) function

Fx(f) = Ey∈Fnpr{0}

 ∏
λ∈F∗p

φ(f)(x+ λy)
. (5.6)

Then, for a set B ⊆ Fnp , the value Fx(φ−1(1B)) equals the fraction of all nontrivial

lines `x,y through x of which B contains the p− 1 points {x+ λy : λ ∈ F∗p}. If B has

size at least εpn, it follows from Corollary 5.5.3 that Ex∈Fnp [Fx(φ−1(1B))] ≥ c(p, ε).

Moreover, since the monomials in the expectation of (5.6) involve disjoint sets of

143

variables and can be expanded as

∏
λ∈F∗p

φ(f)(x+ λy) = 1
2q

∑
S⊆F∗p

∏
λ∈S

f(x+ λy),

it follows that each Fx is 2(1− p−n)-smooth.

Let µ be the uniform distribution over Fx. We claim that κµ(c(p, ε)) ≥ k, which

implies the result by Theorem 5.1.3 since µ is supported by degree (p− 1)-functions.

For every set A ⊆ Fnp , let BA ⊆ Fnp be a maximal set such that every nontrivial line

through A contains at most p − 2 points of BA, and let fA = φ−1(1BA). Let z be a

uniformly distributed random variable over Fnp , let z1, . . . , zk be independent copies

of z and let A = {z1, . . . , zk}. Then, Fz1 , . . . , Fzk are independent µ-distributed

random functions. Moreover, in the event that both |BA| ≥ εpn and every nontrivial

line through A meets BA in at most p− 2 points, we have

|(Fzi − E[Fz])(fA)| = E
[
Fz(φ−1(1BA))

]
− Fzi(φ−1(1BA)) ≥ c(p, ε)

for every i ∈ [k]. Since this event happens with probability at least 1/2, we have

E
[∥∥∥∥1
k

k∑
i=1

(
Fzi − E[Fz]

)∥∥∥∥
L∞

]
≥ E

[∣∣∣∣1k
(k∑
i=1

(
Fzi − E[Fz]

))
(fA)

∣∣∣∣] ≥ c(p, ε)
2 ,

which gives the claim. �

The proof of the formal version of Corollary 5.1.5 (given below) is similar to that

of Corollary 5.5.1, so we omit it. In the following, PFn−1
p is the projective space

of dimension n − 1, which is the space of directions in Fnp . The formal version of

Corollary 5.1.5 is then as follows.

Corollary 5.5.4. For every odd prime p and ε ∈ (0, 1], there exist a positive integer

n1(p, ε) and a c = c(p, ε) ∈ (0, 1/2] such that the following holds. Let n ≥ n1(p, ε) and

k be positive integers. Suppose that for independent uniformly distributed elements
144

z1, . . . , zk ∈ PFn−1
p , with probability at least 1/2, there exists a set B ⊂ Fnp of size

|B| ≥ εpn which does not contain any lines with direction in {z1, . . . , zk}. Then,

there exists a (p, c, c)-LDC sending {0, 1}l to {0, 1}pn, where l = Ω(c2k/ log(1/c)).

Feasible parameters for Corollary 5.5.1 Proving lower bounds on k for which

the assumption of Corollary 5.5.1 holds true thus allows one to infer the existence

of (p− 1)-query LDCs with rate Ω(k/N) for N = pn, provided p and ε are constant

with respect to n. We establish the following bounds, which imply the (well-known)

existence of (p− 1)-query LDCs with message length k = Ω((logN)p−2).

Theorem 5.5.5. For every odd prime p there exists an ε(p) ∈ (0, 1] such that the

following holds. For every set A ⊆ Fnp of size |A| ≤
(
n+p−3
p−2

)
− 1, there exists a set

B ⊆ Fnp of size ε(p)pn such that every line through A contains at most p − 2 points

of B.

The proof uses some basic properties of polynomials over finite fields. For an

n-variate polynomial f ∈ Fp[x1, . . . , xn] denote Z(f) = {x ∈ Fnp : f(x) = 0}. The

starting point of the proof is the following standard result (see for example [Tao14]),

showing that small sets can be ‘captured’ by zero-sets of nonzero, homogeneous poly-

nomials of low degree.

Lemma 5.5.6 (Homogeneous Interpolation). For every A ⊆ Fnp of size |A| ≤(
n+d−1

d

)
− 1, there exists a nonzero homogeneous polynomial f ∈ Fp[x1, . . . , xn] of

degree d such that A ⊆ Z(f).

The next two lemmas show that if f is nonzero, homogeneous and degree d, and

if a ∈ F∗p is such that f−1(a) is nonempty, then lines through Z(f) meet f−1(a) in at

most d points.

Lemma 5.5.7. Let f ∈ Fp[x1, . . . , xn] be a nonzero homogeneous polynomial of de-

gree d. Let a ∈ F∗p be such that the set f−1(a) is nonempty. Then, every line that

meets f−1(a) in d+ 1 points must have direction in Z(f).
145

Proof. The univariate polynomial g(λ) = f(x+ λy) formed by the restriction of f to

a line `x,y has degree at most d. By the Factor Theorem, such a polynomial must

be the constant polynomial g(λ) = a to assume the value a for d + 1 values of λ.

Since f is homogeneous, the coefficient of λd, which must be zero, equals f(y), giving

the result. �

The following lemma is essentially contained in [BR16].

Lemma 5.5.8 (Briët–Rao). Let f ∈ Fp[x1, . . . , xn] be a nonzero homogeneous poly-

nomial of degree d. Let a ∈ F∗p be such that f−1(a) is nonempty. Then, there exists no

line that intersects Z(f), meets f−1(a) in at least d points and has direction in Z(f).

Proof. For a contradiction, suppose there exists a line `x,y through Z(f) that

meets f−1(a) in d points and has direction y ∈ Z(f). Observe that for every

λ ∈ Fp, the shifted line `x+λy,y also meets f−1(a) in d points. Hence, without

loss of generality we may assume that the line starts in Z(f), that is x ∈ Z(f).

Let g(λ) = a0 + a1λ + · · · + adλ
d = f(x + λy) ∈ Fp[λ] be the restriction of f

to `x,y. It follows that a0 = g(0) = f(x) = 0 and, since f is homogeneous,

that ad = f(y) = 0. Moreover, there exist distinct elements λ1, . . . , λd ∈ F∗p such that

g(λi) = f(x+ λiy) = a for every i ∈ [d]. Then g(λ)− a is a degree d− 1 polynomial

with d distinct roots. But it cannot be the zero polynomial since it takes value −a

when λ = 0. �

The final ingredient for the proof of Theorem 5.5.5 is the DeMillo–Lipton–

Schwartz–Zippel Lemma, as it appears in [CT14].

Lemma 5.5.9 (DeMillo–Lipton–Schwartz–Zippel). Let f ∈ Fp[x1, . . . , xn] be a

nonzero polynomial of degree d and denote r = |Fp|. Then,

|Z(f)| ≤
(

1− 1
rd/(r−1)

)
rn.

146

Proof of Theorem 5.5.5. Let A ⊆ Fnp be a set of size |A| ≤
(
n+p−3
p−2

)
− 1. Let f ∈

Fp[x1, . . . , xn] be a nonzero degree-(p − 2) homogeneous polynomial such that A ⊆

Z(f), as promised to exist by Lemma 5.5.6. By Lemma 5.5.9, there exists an

a ∈ F∗p such that the set B = f−1(a) has size at least |B| ≥ pn/p(2p−3)/(p−1). By

Lemma 5.5.7, every line that meets B in p − 1 points must have direction in Z(f),

but by Lemma 5.5.8 no such line can pass through Z(f). Hence, every line through A

meets B in at most p− 2 points. �

5.5.2 Hypergraph pseudorandomness

A second candidate for constructing outlaws comes from special types of hypergraphs.

A hypergraph H = (V,E) is a pair consisting of a finite vertex set V and an edge

set E of subsets of V that allows for parallel (repeated) edges. A hypergraph is t-

uniform if all its edges have size t. For subsets W1, . . . ,Wt ⊆ V , define the induced

edge count by

eH(W1, . . . ,Wt) =
∑

v1∈W1

· · ·
∑
vt∈Wt

1E({v1, . . . , vt}).

A perfect matching in a t-uniform hypergraph is a family of vertex-disjoint edges that

intersects every vertex. We shall use the following notion of pseudorandomness.

Definition 5.5.10 (Relative pseudorandomness). Let H = (V,E), J = (V,E ′) be

t-uniform hypergraphs with identical vertex sets. Then J is ε-pseudorandom relative

to H if for all W1, . . . ,Wt ⊆ V , we have

∣∣∣∣∣eJ(W1, . . . ,Wt)
|E ′|

− eH(W1, . . . ,Wt)
|E|

∣∣∣∣∣ < ε. (5.7)

The left-hand side of (5.7) compares the fraction of edges that the sets W1, . . . ,Wt

induce in J with the fraction of edges they induce in H. Standard concentration ar-

147

guments show that if |E| ≥ |V |, then a random hypergraph J whose edge set E ′ is

formed by independently putting each edge of E in E ′ with probability p = p(ε, t), is

ε-pseudorandom relative to H with high probability. A deterministic hypergraph J

is thus pseudorandom relative to H if it mimics this property of truly random sub-

hypergraphs. For graphs, relative ε-pseudorandomness turns into a common notion

sometimes referred to as ε-uniformity when H is the complete graph with all loops,

in which case (5.7) says that the number of edges induced by a pair of vertex-subsets

W1,W2 is roughly equal to the product of their densities (|W1|/|V |)(|W2|/|V |). Uni-

formity in graphs is closely connected to the perhaps better-known notion of spectral

expansion [HLW06]. These two notions were recently shown to be equivalent (up-to

universal constants) for all vertex-transitive graphs [CZ17].

We shall be interested in hypergraphs whose edge set can be partitioned into a

family of “blocks”, such that randomly removing relatively few of the blocks likely

leaves a hypergraph that is not pseudorandom relative to the original. (Think of a

Jenga tower2 that’s already in a delicate balance, so that there are only few ways, or

perhaps even no way, to remove many blocks without having it collapse.) Our blocks

will be formed by perfect matchings. For technical reasons, the formal definition

takes the view of building a new hypergraph out of randomly selected matchings, as

opposed to obtaining one by randomly removing matchings.

Definition 5.5.11 (Jenga hypergraph). A t-uniform hypergraph H is (k, ε)-jenga

if its edge set can be partitioned into a family M of perfect matchings such that,

with probability at least 1/2, the disjoint union of k independent uniformly distributed

matchings from M forms a hypergraph which is not ε-pseudorandom relative to H.

We have the following simple corollary to Theorem 5.1.3.

2Jenga R© is a game of dexterity in which players begin with a tower of wooden blocks and take
turns trying to remove a block without making the tower collapse.

148

Corollary 5.5.12. Let n, k, t be positive integers and ε ∈ (0, 1]. Assume that there ex-

ists a t-uniform n-vertex hypergraph that is (k, ε)-jenga. Then, there exists a (t, η, η)-

LDC sending {0, 1}l to {0, 1}tn, where

η = Ω(ε/t2) and l = Ω(ε2k/t4 log(t2/ε)).

Proof. Let H = (V,E) be a hypergraph as assumed in the corollary. Let M be a

partition of E into perfect matchings such that if M1, . . . ,Mk are independent and

uniformly distributed over M, then with probability at least 1/2, the hypergraph

J = (V,M1] · · ·]Mk) is not ε-pseudorandom relative to H.

Let V1, . . . , Vt be copies of V . For each M ∈M, define fM : RV1∪···∪Vt → R by

fM(x[1], . . . , x[t]) = 1
|M |

∑
v1∈V1

· · ·
∑
vt∈Vt

1M({v1, . . . , vt})x[1]v1 · · ·x[t]vt , x[i] ∈ RVi .

The function fM is a degree-t polynomial. Since every one of the tn variables appears

in exactly one monomial and |M | = n/t, the restriction of fM to {−1, 1}V1∪···∪Vt is

t2-smooth. Moreover, for J = (V,M) and W1, . . . ,Wt ⊆ V , we have

fM(1W1 , . . . , 1Wt) = eJ(W1, . . . ,Wt)
|M |

.

Let M1, . . . ,Mk be independent uniformly distributed matchings from M and

consider the random hypergraph J = (V,M1] · · ·] Mk). Let f̄ = E[fM1] be the

expectation of the random function fM1 and note that E[fMi
] = f̄ for each i ∈ [k].

149

Then, since the functions fMi
− f̄ are multilinear,

E
[∥∥∥∥1
k

k∑
i=1

(fMi
− f̄)

∥∥∥∥
L∞

]
≥ E

[
max

W1,...,Wt⊆V

∣∣∣∣1k
k∑
i=1

(fMi
− f̄)(1W1 , . . . , 1Wt)

∣∣∣∣]

= E
[

max
W1,...,Wt⊆V

∣∣∣∣eJ(W1, . . . ,Wt)
k|M |

− eH(W1, . . . ,Wt)
|E|

∣∣∣∣]
≥ ε

2 .

The result now follows from Theorem 5.1.3. �

In the context of outlaws and LDCs, the relevant question concerning Jenga hy-

pergraphs is the following. Let κJ(n, t, ε) denote the maximum integer k such that

there exists an n-vertex t-uniform hypergraph that is (k, ε)-jenga.

Question 5.5.13. For integer t ≥ 2 and parameter ε ∈ (0, 1], what is the growth rate

of κJ(n, t, ε) as a function of n ∈ N?

For t = 2 (graphs), the answer to Question 5.5.13 follows from famous work of

Alon and Roichman [AR94] on expansion of random Cayley graphs, which implies

that for constant ε ∈ (0, 1], we have κ(n, 2, ε) = Θ(log n). The lower bound follows for

instance by partitioning the edge set of the complete graph with vertex set V = Fm2

into the collection of matchings of the form My =
{
{x, x + y} : x ∈ Fm2

}
for each

y ∈ Fm2 r {0}. Any m − 1 of such matchings give a graph with two disconnected

components of equal size, making it (m − 1, 1
4)-jenga. Via Corollary 5.5.12, this

arguably gives the most round-about way to prove the existence of 2-query LDCs

matching the paramaters of the Hadamard code! Generalizing the above example,

[BR16] considered the p-uniform hypergraph on Fmp whose edges are the (unordered)

nontrivial lines. It was shown that this hypergraph is (mp−1, ε)-jenga for some ε = ε(p)

depending on p only, by partitioning the edge set according to the directions of the

lines, that is, partitioning it with the matchings My =
{
{x+λy : λ ∈ Fp} : x ∈ Fmp

}
,

150

y ∈ Fmp r {0}. To the best of our knowledge, the best upper bounds on κJ(n, t, ε) for

constant t ≥ 3 and ε ∈ (0, 1] follow from upper bounds on LDCs, via Corollary 5.5.12.

We end with the following natural question concerning Jenga hypergraphs.

Question 5.5.14. Is κJ(n, t, ε) largest for the complete hypergraph?

151

Chapter 6

Lower bounds for affine invariant

local codes

6.1 Introduction

We restrict ourselves throughout this chapter to the setting where the query com-

plexity is a constant (independent of the length of the code) and consider the tradeoff

between query complexity and code length. The current best constant-query LCCs

have exponential length, while the current best constant-query LTCs have near-linear

length but they are quite complicated [BS08, Din07, Mei09, Vid15]. Getting subexpo-

nential length LCCs or linear length LTCs with constant query complexity are major

open problems in the area.

Intuitively, for LCCs and LTCs with constant query complexity, there must be

a lot of redundancy in the code, since every symbol of the codeword must satisfy

local constraints with most other symbols in the codeword. A systematic way to

generate redundancy is to make sure that the code has a large group of invariances1.
1A quite different way to generate redundancy is through tensoring; see [BSS06]. Invariances

and tensoring are essentially the only two “generic” reasons known to cause local correctabil-
ity/testability.

152

Formally, given a code C ⊂ ΣN of length N over alphabet Σ, a codeword c ∈ C can

be naturally viewed as a function c : [N] → Σ. Then, we say that C is invariant

under a set2 G ⊂ {[N] → [N]} if for every π ∈ G and codeword c ∈ C, c ◦ π also

describes a codeword c′ ∈ C. Now, the key observation is that if for every codeword

c ∈ C, if there is a constraint among c(i1), . . . , c(ik) for some i1, . . . , ik ∈ [N], then for

every c ∈ C, there must also be a constraint among c(π(i1)), . . . , c(π(ik)) for any π in

the invariance set G, since c ◦ π is itself another codeword. Hence if G is large, the

presence of one local constraint immediately implies presence of many and suggests the

possibility of local algorithms for the code. This connection between invariance and

correctability/testability was first explicitly examined by Kaufman and Sudan [KS08].

One is then motivated to understand more clearly the possibilities and limitations of

local correctors/testers for codes possessing natural symmetries.

We focus on affine-invariant codes, for which the domain [N] is an n-dimensional

vector space Kn over a finite field K and the code C ⊂ {Kn → Σ} is invariant under

affine transformations A : Kn → Kn. Affine invariance is a very natural symmetry

for “algebraic codes” and has long been studied in coding theory [KLP67]. The study

of affine-invariant LCCs and LTCs was initiated in [KS08] and has been investigated

in several follow-up works [BSS11, Guo13, BSRZS12, GSVW14]. The hope is that

because affine-invariant codes have a large group of invariance and, at the same time,

are conducive to non-trivial algebraic constructions, they may contain a code that

improves current constructions of LCCs or LTCs.

The current best parameters for constant-query affine-invariant LCCs and LTCs

are achieved by the lifted codes of Guo, Kopparty and Sudan [GKS13]. They construct

an affine-invariant code F ⊂ {Fn2` → F2} with exp(Θ(nr−2)) codewords that is an

(r − 1)-query LCC and an r-query LTC, where r = 2`. The Θ(·) notation hides

factors that depend on r but not n. For LCCs, the same asymptotic tradeoff between
2{A→ B} and BA denote the set of all functions from A to B.

153

query complexity and code length is achieved by the Reed-Muller code. For every

r ≥ 2, the Reed-Muller code of order r−1 (i.e., polynomials over Fq on n variables of

total degree ≤ r−1 with q > r) is an affine-invariant r-query LCC with exp(Θ(nr−1))

codewords. In fact, even if we drop the affine-invariance requirement, Reed-Muller

codes and the construction of [GKS13] achieve the best known codeword length for

constant query LCCs3.

In this work, we show that the parameters for the lifted codes of [GKS13] are, in

fact, tight for affine-invariant LCCs/LTCs in {Kn → Σ} for any fixed finite field K

and any fixed finite alphabet Σ.

Theorem 6.1.1 (Main Result, informal).

(i) Let C ⊂ {Kn → Σ} be an r-query affine-invariant LCC. Then |C| ≤

exp
(
OK,r,|Σ|(nr−1)

)
.

(ii) Let C ⊂ {Kn → Σ} be an r-query affine-invariant LTC. Then |C| ≤

exp
(
OK,r,|Σ|(nr−2)

)
.

Note that a local constraint among t coordinates can be used to correct one of

the coordinate using t− 1 queries by a local corrector whereas a local tester needs to

make t queries to check the constraint. This explains the difference in the dependence

of r in the bounds for LCCs and LTCs.

6.1.1 Related Work

Ben-Sasson and Sudan in [BSS11] obtained a similar result as Theorem 6.1.1, when

the code is assumed to be linear, i.e., when the codewords form a vector space. They

showed that if C ⊂ {Kn → F} is an (r−1)-query locally correctable or r-query locally
3In contrast, there exist non-affine-invariant LTCs of constant query complexity and inverse

polylogarithmic rate. This corresponds to a constant query LTC C ⊂ {{0, 1}n → {0, 1}} with
exp(2n/poly(n)) codewords, while the affine-invariant LTC of [GKS13] and Reed-Muller codes have
exp(poly(n)) codewords for constant query complexity.

154

testable linear, affine-invariant code, where K and F are finite fields of characteristic

p > 0 with K an extension of F, then the dimension of C as a vector space over F is

at most (n logp |K|)r−2. When K is fixed (as in [GKS13]’s construction of constant

query LCCs/LTCs), the result of [BSS11] is a very special case of our Theorem 6.1.1.

On the other hand, [BSS11]’s result also applies when the size of K is growing (as

long as K extends F), whereas ours does not.

Since LCCs are stronger than LDCs, lower bounds for LDCs also apply to

LCCs. Unfortunately, stronger lower bounds are not known. For general (non-

affine-invariant) LCCs, tight lower bounds are known only for 2-query LCCs.

In [KW04, WdW05a], it was shows that if C ⊂ {{0, 1}n → Σ} is a 2-query LCC4,

then |C| ≤ exp(O(n|Σ|2)). This is tight for constant Σ and achieved by the Hadamard

code. For r-query LCCs where r > 2, the lower bounds known are much weaker. The

best known bounds, due to [KW04, Woo07], show that if C ⊂ {{0, 1}n → {0, 1}} is

an r-query LCC, then

|C| ≤ exp
(
2n/(1+1/(dr/2e+1))+o(n)

)
.

See Section 2.3.4, Section 2.4.3 and Section 2.5.1 for more information about lower

bounds.

Higher-order Fourier analysis was applied to other problems in coding theory

in [BL18, TW14].

6.1.2 Proof Overview

Our arguments are based on standard techniques from higher-order Fourier analysis

[Tao12], but they are new in this context. We show that if an affine-invariant code

is an r-query LCC, then its codewords are far from each other in the U r-norm, the
4The lower bound also holds for the weaker notion of locally decodable code (LDC)

155

Gowers norm of order r. Similarly, we show that the codewords of an affine-invariant

r-query LTC are far from each other in the U r−1-norm. Therefore, we can upper

bound the number of LCC/LTC codewords in terms of the size of a net that is fine

enough with respect to the Gowers norm of an appropriate order. We bound the size

of such a net by explicitly constructing one using a standard decomposition theorem

(analogous to Szemerédi’s regularity lemma): any bounded function f : Kn → C can

be approximated, up to a small error in the Gowers norm, by a composition of a

bounded number of low-degree non-classical polynomials [TZ12].

The way we argue that two codewords f and g of an r-query LCC are far in the

Gowers norm is that if ‖f − g‖Ur < ε, then for small enough ε (with respect to r, |Σ|

and correctness probability), the local corrector when applied to f can act as if it is

applied to g. The argument is, briefly, as follows. On the one hand, the codewords f

and g must be far in Hamming distance, because the definition of LCC implies that

there is a unique codeword close to any string. So, with constant probability over

choice of y ∈ Kn, the local corrector’s guess for f(y) must differ from g(y). On the

other hand, we can lower bound by a constant the probability of the event that the

corrector outputs g(y) when it queries coordinates of f , because f and g are close in

the ‖ · ‖Ur norm. This last calculation uses the affine invariance of the code and the

generalized von Neumann inequality, which bounds by ‖f0‖Uk the expectation over

z1, . . . , zm ∈ Kn of the product ∏k
i=0 fi(Li(z1, . . . , zm)), where the Li’s are arbitrary

linear forms so that no two are linearly dependent and fi : Kn → C are arbitrary

functions with |fi| ≤ 1.

The argument for r-query LTCs is similar. Suppose f and g are close in the ‖·‖Ur−1

norm. Consider the random function H such that for every x independently, H(x)

equals f(x) with probability 1/2 and g(x) with probability 1/2. H itself is far from

a codeword with high probability. But we show that since the local tester accepts f ,

it will also accept H ◦ ` for a random invertible affine map ` : Kn → Kn with good

156

probability. This implies that with good probability, H ◦ ` is close to a codeword and

by affine-invariance, H itself is close to a codeword which gives a contradiction. To

draw this conclusion, we again use the generalized von Neumann inequality as well

as a hybrid argument.

Organization Section 6.2 contains preliminaries that lay the foundations of our

analysis. Section 6.3 proves the first part of our main result about LCCs, while

Section 6.4 proves the second part about LTCs.

6.2 Preliminaries

6.2.1 Error-correcting codes and affine invariance

Here we recall a few definitions about error correcting codes from Section 2.2 and

setup some notation. Let X be a finite set called the set of coordinates and Σ be

an other finite set called the alphabet. Let ΣX denote the set of all functions from

X → Σ. A subset C ⊂ ΣX is called a code and its elements are called codewords.

Given f, g ∈ ΣX , the (normalized) Hamming distance between f and g is

distH(f, g) := Pr
x∈X

[f(x) 6= g(x)]

where x is uniformly chosen from X . For a code C ⊂ ΣX , the minimum distance of C

as minf,g∈C,f 6=g distH(f, g).

Let NΣ = {q : Σ→ R≥0 : ∑i∈Σ q(i) = 1} denote the probability simplex on Σ. We

embed Σ into NΣ by sending i ∈ Σ to ei which is the ith coordinate vector in RΣ. This

also lets us extend functions f : X → Σ to f̂ : X → NΣ using the embedding. We

call f̂ the simplex extension of f . Now given f, g ∈ ΣX , we can write the Hamming

157

distance between them as

distH(f, g) = 1− Pr
x∈X

[f(x) = g(x)] = 1− Ex∈X 〈f̂ , ĝ〉

where 〈·, ·〉 is the standard inner product in RΣ.

Definition 6.2.1 (Affine invariance). Let X be a finite dimensional vector space over

some finite field K, then C ⊂ ΣX is called affine invariant if for every f ∈ C and

every invertible affine map ` : X → X , f ◦ ` ∈ C.

Locally correctable and testable codes are defined formally in Sections 6.3 and 6.4

respectively.

6.2.2 Higher order Fourier analysis

Fix a finite field Fp of prime order p, and let K = Fq where q = pt for a positive

integer t. K is then a vector space of dimension t over Fp. We denote by Tr : K→ Fp

the trace function:

Tr(x) = x+ xp + xp
2 + · · ·+ xp

t−1
.

Also, we use | · | to denote the obvious map from Fp to {0, 1, . . . , p− 1}.

Given functions f, g : Kn → C, we define their inner product as 〈f, g〉 =

Ex[f(x)g(x)] where x is chosen uniformly from Kn. We define ‖·‖p-norm on such

functions as ‖f‖p = Ex[|f(x)|p]1/p. We say a function f : Kn → C is bounded if

|f | ≤ 1. Let T denote the circle group R/Z and e : T → C be the map given by

e(x) = exp(2πix).

Definition 6.2.2 (Non-classical Polynomials). A non-classical polynomial of degree

< d is a function f : Kn → T if

∀h1, h2 · · · , hd ∈ Kn Dh1Dh2 · · ·Dhdf = 0

158

where Dh is the difference operator defined as Dhf(x) = f(x + h) − f(x). For such

an f , the function e(f) is called a non-classical phase polynomial of degree < d.

Note that the derivative operator is linear, and so, the multiplicative structure of

the field K is ignored here. Because as an additive group, Kn is isomorphic to Ftn, a

non-classical polynomial P : Kn → T over K can also be identified as a non-classical

polynomial P : Ftn → T over F.

Let α1, · · · , αt ∈ K be a basis for K when viewed as a vector space over Fp. It is

known [TZ12, BB15] that non-classical polynomials of degree ≤ d are exactly those

functions P : Kn → T which have the following form:

P (x1, . . . , xn)

= θ +
∑
k≥0

∑
0≤di,j<p ∀i∈[n],j∈[t];

0<
∑n

i=1

∑t

j=1 di,j≤d−k(p−1)

cd1,1,...,dn,t,k
∏n
i=1

∏t
j=1 |Tr(αjxi)|di,j

pk+1 (mod 1)

(6.1)

for some cd1,1,...,dn,t,k ∈ {0, 1, · · · , p− 1} and θ ∈ T. Next, we define the Gowers norm

for arbitrary functions f : Kn → C.

Definition 6.2.3 (Gowers uniformity norm [Gow01]). For a function f : Kn → C,

the Gowers norm of order r, denoted by ‖ · ‖Ur , is defined as

‖f‖Ur = (Ex,h1,··· ,hr∈Kn [∆h1∆h2 · · ·∆hrf(x)])1/2r

where ∆h is the multiplicative difference operator defined as ∆hf(x) = f(x+ h)f(x).

The Gowers norm is an actual norm when r ≥ 2. It also satisfies a useful mono-

tonicity property: for any function f : Kn → C,

|E[f(x)]| = ‖f‖U1 ≤ ‖f‖U2 ≤ · · · ≤ ‖f‖Ur ≤ · · · ≤ ‖f‖∞ .

159

See [Tao12] for more on Gowers norm. Observe that if f : Kn → C is a non-classical

phase polynomial of degree < r then ‖f‖Ur = 1. The inverse Gowers theorem is a

partial converse to this. It shows that the Gowers norm of order r of a function is

in direct correspondence with its correlation with non-classical phase polynomials of

degree < r. In particular:

Lemma 6.2.4 (Inverse Gowers theorem [TZ12]). For any bounded5 f : Kn → C, if

‖f‖Ur > δ then there exists a non-classical polynomial P of degree < r such that

| 〈f, e(P)〉 | ≥ c(δ,K, r)

where c(δ,K, r) is a constant depending only on δ,K, r.

A linear form on m variables is a vector L = (w1, · · · , wm) ∈ Km that is interpreted

as a function L : (Kn)m → Kn via the map (x1, · · · , xm) 7→ ∑m
i=1wixi. A key reason

that the Gowers norm is useful in applications is that if a function has small Gowers

norm of the appropriate order, then it behaves pseudorandomly in a certain way with

respect to linear forms.

Lemma 6.2.5 (Generalized von Neumann inequality (Exercise 1.3.23 in [Tao12])).

Let f0, f1, f2, · · · , fk : Kn → C be bounded functions and let L = {L0,L1, · · · ,Lk}

be a system of k + 1 linear forms in m variables such that no form is a multiple of

another. Then

|Ez1,··· ,zm∈Kn [
k∏
i=0

fi(Li(z1, · · · , zm))]| ≤ min
0≤i≤k

‖fi‖Uk .

See Appendix 6.5 for proof.
5Note that bounded means |f | ≤ 1.

160

6.2.3 A net for Gowers norm

The goal of this section is to establish the following claim.

Theorem 6.2.6 (ε-net for U r norm). The metric induced by the ‖ · ‖Ur norm on the

space of all bounded functions {f : Kn → C} has an ε-net of size exp(Oε,K,r(nr−1)).

For the proof, we need the following definitions.

Definition 6.2.7 (Polynomial factors). A polynomial factor B is a sequence of non-

classical polynomials P1, ..., Pk : Kn → T. We also identify it with the function

B : Kn → Tk mapping x 7→ (P1(x), ..., Pk(x)). The partition induced by B is the

partition of Kn given by {B−1(y) : y ∈ Tk}. The complexity of B is the number of

defining polynomials, |B| = k. The degree of B is the maximum degree among its

defining polynomials P1, · · · , Pk. A function f : Kn → C is called B-measurable if it

is constant in each cell of the partition induced by B or equivalently f can be written

as a τ(P1, · · · , Pk) for some function τ : Tk → C.

Definition 6.2.8 (Conditional expectations). Given a polynomial factor B, the con-

ditional expectation of f : Kn → C over B, denoted by E[f |B], is the B-measurable

function defined by

E[f |B](x) = Ey∈B−1(B(x))[f(y)].

Definition 6.2.9 (Factor refinement). Given two polynomial factors B,B′, we say B′

is a refinement of B, denoted by B′ � B, if every cell in the partition induced by B′

is contained in some cell in the partition induced by B.

The definition of refinement immediately implies:

Lemma 6.2.10 (Pythagoras theorem). Let B,B′ be polynomial factors such that

B′ � B, then for any function f : Kn → C,

‖E[f |B′]‖2
2 = ‖E[f |B]‖2

2 + ‖E[f |B′]− E[f |B]‖2
2 .

161

The next claim shows that any bounded function is “close” to being measurable

by a polynomial factor of bounded complexity. Precisely:

Lemma 6.2.11 (Decomposition Theorem). Any bounded f : Kn → C can be ap-

proximated in ‖ · ‖Ur by a function of a small number of degree < r non-classical

polynomials i.e. for any ε > 0, there exists non-classical polynomials P1, P2, · · · , Pk

of degree < r with Pi(0̄) = 0 ∀i and a bounded function τ : Tk → C such that

‖f − τ(P1, P2, · · · , Pk)‖Ur ≤ ε

where k = k(ε,K, r) is a constant depending only on ε,K, r.

Proof. The proof is similar to the proof of the Quadratic Koopman-von Neumann

decompostion which is Prop 3.7 in [Gre06] but using the full Inverse Gowers Theorem

(Lemma 6.2.4) and similar claims are implicit elsewhere, but for completeness, we give

the proof.

The main idea is to approximate the function f using its conditional expectation

over a suitable polynomial factor B of degree < r. We will start with the trivial factor

B0 = (1) and iteratively construct more refined partitions Bi � Bi−1 until we find a

factor Bk which satisfies ‖f − E[f |Bk]‖Ur ≤ ε. To bound the number of iterations

needed to achieve this, we will show that the energy ‖E[f |Bi]‖2
2 which is bounded

above by 1, increases by a fixed constant in every step.

Suppose that after step i − 1, we still have ‖f − E[f |Bi−1]‖Ur > ε. Let g = f −

E[f |Bi−1], then by the inverse Gowers theorem (Lemma 6.2.4), we have some non-

classical polynomial Pi of degree < r such that | 〈g, e(Pi)〉 | ≥ κ = c(ε, p, r). We can

assume that Pi(0̄) = 0. Refine the factor Bi−1 by adding the polynomial Pi to obtain

Bi � Bi−1. Now consider the energy increment,

‖E[f |Bi]‖2
2 − ‖E[f |Bi−1]‖2

2 = ‖E[f |Bi]− E[f |Bi−1]‖2
2 = ‖E[g|Bi]‖2

2

162

where we used the Pythagoras theorem(Lemma 6.2.10) and the fact that

E
[
E[f |Bi−1]

∣∣∣Bi] = E[f |Bi−1]

since Bi � Bi−1. So

κ2 ≤ |E[g · e(Pi)]|2 =
∣∣∣E[E[g · e(Pi)|Bi]

]∣∣∣2 =
∣∣∣E[e(Pi)E[g|Bi]

]∣∣∣2
≤ ‖E[g|Bi]‖2

1 ≤ ‖E[g|Bi]‖2
2 = ‖E[f |Bi]‖2

2 − ‖E[f |Bi−1]‖2
2 .

Thus the energy increases by κ2 every step. But since the energy is bounded above by

1, the process should end in a finite number of steps k ≤ 1
κ2 . So ‖f −E[f |Bk]‖Ur ≤ ε,

but since E[f |Bk] is Bk-measurable, we can write E[f |Bk] = τ(P1, · · · , Pk) for some

function τ with |τ | = |E[f |Bk]| ≤ |f | ≤ 1. �

We are now ready to prove Theorem 6.2.6.

Proof of Theorem 6.2.6. Recall that K is an extension field of dimension t over a

prime field Fp. The ε-net will be the set N of all functions of the form τ(P1, · · · , Pk)

where P1, · · · , Pk are degree < r non-classical polynomials with zero constant terms,

τ : Tk → C is a bounded function and k = k(ε, p, r) is the constant given by

Lemma 6.2.11. But we will not include all possible bounded τ : Tk → C. Firstly by

Equation 6.1, P1, · · · , Pk take values only in 1
pr
Z/Z. Next we will discretize the set

{z ∈ C : |z| ≤ 1} into the ε-lattice i.e. we will only consider maps τ : (1
pr
Z/Z)k →

{z ∈ C : |z| ≤ 1} ∩ ε(Z + iZ). The number of such maps is bounded by (4/ε2)prk .

By Equation 6.1, a non-classical polynomial of degree < r in n variables with

zero constant term can be represented by ≤
(
nt+r−1
r−1

)
r coefficients in {0, 1, · · · , p−1}.

So the number of such non-classical polynomials is bounded by exp (Or,K(nr−1)).

163

Combining both the bounds,

|N | ≤ exp
(
Or,K(nr−1)

)k
· (4/ε2)prk = exp

(
Oε,K,r(nr−1)

)
.

We will now prove that N is a 3ε-net. Given any f : Kn → [−1, 1], using

Lemma 6.2.11, there is a function τ(P1, · · · , Pk) such that

‖f − τ(P1, P2, · · · , Pk)‖Ur ≤ ε.

If we consider the τ̃ ∈ N by rounding values real and imaginary parts of τ to the

nearest multiple of ε, we get

‖f − τ̃(P1, P2, · · · , Pk)‖Ur

≤ ‖f − τ(P1, P2, · · · , Pk)‖Ur + ‖τ(P1, P2, · · · , Pk)− τ̃(P1, P2, · · · , Pk)‖Ur

≤ ε+ ‖τ(P1, P2, · · · , Pk)− τ̃(P1, P2, · · · , Pk)‖∞ ≤ 3ε.

�

6.3 Locally Correctable Codes

We will recall here the definition of a locally correctable code from Section 2.4. An

(r, δ, η)-LCC is a code C ⊂ ΣX with the following property:

For each x ∈ X there is a distributionMx over r-tuples of distinct6 coordinates such
6Without loss of generality, we can assume the tuples have distinct coordinates by adding dummy

coordinates and modifying the decoding functions Dx,y1,··· ,yr

164

that whenever f̃ ∈ ΣX is δ-close to some codeword f ∈ C in Hamming distance,

Pr
(y1,··· ,yr)∼Mx

[Dx,y1,··· ,yr(f̃(y1), f̃(y2), · · · , f̃(yr)) = f(x)]

≥ Pr
(y1,··· ,yr)∼Mx

[Dx,y1,··· ,yr(f̃(y1), f̃(y2), · · · , f̃(yr)) = σ] + η

for every σ ∈ Σ such that σ 6= f(x) where Dx,y1,··· ,yr : Σr → Σ, called the decoding

operator, depends only on x, y1, · · · , yr.

If furthermore X is a vector space and C is affine invariant then we call it an affine

invariant LCC.

Remark 6.3.1. Let |Σ| = m, Without loss of generality, we can assume that Σ =

{1, 2, · · · ,m}. Then we can extend functions f : X → Σ to f̂ : X → Nm. The

decoding operators D : Σr → Σ can also be extended to D̂ : Nrm → Nm as follows: For

z1, · · · , zr ∈ Nm define

D̂(z1, · · · , zr) =
∑

1≤i1,··· ,ir≤m
eD(i1,··· ,ir)(z1)i1 · · · (zr)ir

where ej stands for the jth coordinate vector in Rm and (zj)i is the ith coordinate of

the vector zj. Now we the decoding condition implies that:

E(y1,··· ,yr)∼Mx

[〈
f̂(x), D̂x,y1,··· ,yr(f̂(y1), f̂(y2), · · · , f̂(yr))

〉]
≥ η.

Now, we are ready to prove our main result of this section.

Theorem 6.3.2 (Lower bound for LCCs). Let C ⊂ ΣKn be an (r, δ, η) affine-invariant

LCC where η > 1− 2δ
3 . Then |C| ≤ exp

(
Oδ,K,r,|Σ|(nr−1)

)
.

Proof. Let |Σ| = m. Let N be an ε/2-net for the space of all bounded functions

{h : Kn → C} with the metric induced by ‖ · ‖Ur -norm where ε = 2δ
3mr . Given a

165

bounded h : Kn → C, define

φ(h) := argminh′∈N‖h− h′‖Ur

(break ties arbitrarily). Since N is an ε/2 net, we have ‖h − φ(h)‖Ur ≤ ε/2. Define

Ψ : C → Nm as

Ψ(f) := (φ(f̂1), · · · , φ(f̂m))

where f̂i : Kn → R≥0 is the ith coordinate function of the simplex extension f̂ : Kn →

Nm of f : Kn → Σ. We claim that Ψ is an injection which implies that |C| ≤ |N |m.

Now using Theorem 6.2.6, the required bound follows. Suppose that Ψ is not an

injection. Let f, g ∈ C be two distinct codewords such that Ψ(f) = Ψ(g). This

implies that

∀ i ∈ [m] ‖f̂i − ĝi‖Ur ≤ ‖f̂i − φ(f̂i)‖Ur + ‖ĝi − φ(ĝi)‖Ur ≤ ε.

By affine invariance of C, f ◦ ` ∈ C for all invertible affine maps ` : Kn → Kn. So by

the local correction property,

Pr
`,y0,(y1,··· ,yr)∼My0

[f ◦ `(y0) = Dy0,y1,··· ,yr(f ◦ `(y1), · · · , f ◦ `(yr))] ≥ η

166

where ` ranges uniformly over all invertible affine maps from Kn → Kn and y0 ranges

uniformly over Kn. Now consider the following difference:

Pr
`,y0,(y1,··· ,yr)∼My0

[f ◦ `(y0) = Dy0,y1,··· ,yr(f ◦ `(y1), · · · , f ◦ `(yr))]

− Pr
`,y0,(y1,··· ,yr)∼My0

[g ◦ `(y0) = Dy1,··· ,yr(f ◦ `(y1), · · · , f ◦ `(yr))]

= E`Ey0E(y1,··· ,yr)∼My0

[〈
f̂ ◦ `(y0), D̂y0,y1,··· ,yr(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

〉
−
〈
ĝ ◦ `(y0), D̂y1,··· ,yr(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

〉]
= Ey0E(y1,··· ,yr)∼My0

[
E`
[〈
f̂ ◦ `(y0)− ĝ ◦ `(y0), D̂y0,y1,··· ,yr(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

〉]]

Now we fix y0, y1, · · · , yr and show that inner expectation is small for each tu-

ple (y0, y1, · · · , yr). Let us denote D = Dy0,y1,··· ,yr for brevity. Let t =

rank(y0, y1, · · · , yr)7, thus there exist independent vectors v1, · · · , vt ∈ Kn such

that for every 0 ≤ i ≤ r, yi = ∑t
j=1 λijvj for some fixed λij ∈ K. The action of a

random invertible affine map ` can be approximated by sampling z0, z1, · · · , zt ∈ Kn

uniformly and mapping yi 7→ z0 + ∑t
j=1 λijzj since with probability 1 − on(1),

7rank(y0, y1, · · · , yr) is the dimension of the subspace spanned by the vectors y0, y1, · · · , yr.

167

z1, · · · , zt will be independent. Therefore,

E`
[〈
f̂ ◦ `(y0)− ĝ ◦ `(y0), D̂y0,y1,··· ,yr(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

〉]
= on(1) + Ez0,z1,··· ,zt∈Kn

〈(f̂ − ĝ)(z0 +
t∑

j=1
λ0jzj),

D̂

f̂(z0 +
t∑

j=1
λ1jzj), · · · , f̂(z0 +

t∑
j=1

λrjzj)
〉

(we can ignore the on(1) term)

= Ez0,z1,··· ,zt∈Kn

〈(f̂ − ĝ)(z0 +
t∑

j=1
λ0jzj), ∑

1≤i1,··· ,ir≤m
eD(i1,··· ,ir)

r∏
k=1

f̂ik(z0 +
t∑

j=1
λkjzj)

〉
= Ez0,z1,··· ,zt∈Kn

 ∑
1≤i1,··· ,ir≤m

(f̂ − ĝ)D(i1,··· ,ir)(z0 +
t∑

j=1
λ0jzj) ·

r∏
k=1

f̂ik(z0 +
t∑

j=1
λkjzj)


≤

 ∑
0≤i1,··· ,ir≤m−1

‖(f̂ − ĝ)D(i1,··· ,ir)‖Ur
 ≤ mrε

where the first inequality is obtained by applying generalized von Neumann inequality

(Lemma 6.2.5) to each term. Therefore

Pr
`,y0,(y1,··· ,yr)∼My0

[g ◦ `(y0) = Dy1,··· ,yr(f ◦ `(y1), · · · , f ◦ `(yr))]

≥ Pr
`,y0,(y1,··· ,yr)∼My0

[f ◦ `(y0) = Dy1,··· ,yr(f ◦ `(y1), · · · , f ◦ `(yr))]−mrε

≥ η − 2δ/3.

168

On the other hand,

Pr
`,y0,(y1,··· ,yr)∼My0

[g ◦ `(y0) = Dy1,··· ,yr(f ◦ `(y1), · · · , f ◦ `(yr))]

≤ Pr
`,y0,(y1,··· ,yr)∼My0

[g ◦ `(y0) = f ◦ `(y0)]

+ Pr
`,y0,(y1,··· ,yr)∼My0

[f ◦ `(y0) 6= Dy1,··· ,yr(f ◦ `(y1), · · · , f ◦ `(yr))]

≤ Pr
x

[f(x) = g(x)] + 1− η

≤ 1− 2δ + 1− η (By Lemma 2.4.2)

This is a contradiction when η > 1− 2δ
3 .

�

6.4 Locally Testable Codes

We start by defining a weaker definition of locally testable codes than the one given

in Section 2.5.

Definition 6.4.1 ((weak) Locally Testable Code (LTC)). An (r, δ, τ)-weak LTC is a

code C ⊂ ΣX with minimum distance at least δ and the following property:

There is a distribution M over r-tuples of distinct8 coordinates such that for each

codeword f ∈ C,

Pr
(y1,··· ,yr)∼M

[Dy1,··· ,yr(f(y1), f(y2), · · · , f(yr)) = 1] ≥ 3/4

and for every g ∈ ΣX which is τ -far away from every codeword,

Pr
(y1,··· ,yr)∼M

[Dy1,··· ,yr(g(y1), g(y2), · · · , g(yr)) = 1] ≤ 1/4

8Again, without loss of generality, we can assume the tuples have distinct coordinates by adding
dummy coordinates and modifying the decoding functions Dy1,··· ,yr

169

where Dy1,··· ,yr : Σr → {0, 1}, called the testing operator, depends only on y1, · · · , yr.

If furthermore X is a vector space and C is affine-invariant then we call it an affine

invariant weak LTC.

Note that a (r, δ, ρ) (strong) LTC as defined in Section 2.5 is also a (r, δ, 3
4ρ)-

weak LTC. Therefore our lower bounds also apply to (strong) LTCs with appropriate

parameters.

Remark 6.4.2. Let |Σ| = m, Without loss of generality, we can assume that Σ =

{1, 2, · · · ,m}. We can extend f : X → Σ to f̂ : X → Nm. The testing operator D :

Σr → {0, 1} can also be extended to D̂ : Nrm → [0, 1] as follows: For z1, · · · , zr ∈ Nm

define

D̂(z1, · · · , zr) =
∑

1≤i1,··· ,ir≤m
D(i1, · · · , ir)(z1)i1 · · · (zr)ir . (6.2)

Now we can rewrite the probability in terms of expectation as:

Pr
(y1,··· ,yr)∼M

[Dy1,··· ,yr(f(y1), · · · , f(yr)) = 1]

= E(y1,··· ,yr)∼M[D̂y1,··· ,yr(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))].

We are now ready to prove the main result of this section.

Theorem 6.4.3 (Lower bound for LTC’s). Let C ⊂ ΣKn be an (r, δ, δ/3) affine in-

variant weak LTC, then |C| ≤ exp
(
Oδ,K,r,|Σ|(nr−2)

)
.

Proof. Let |Σ| = m. The proof is very similar to that of Theorem 6.3.2. Let N be

an ε/2-net for the space of all bounded functions {f : Kn → C} with the metric

induced by ‖ · ‖Ur−1-norm where ε = 1/2rmr. Define Ψ : C → Nm as in the proof of

Theorem 6.3.2, it is enough to show that Ψ is an injection. Suppose that Ψ is not an

injection, then there exists f, g ∈ C which are distinct such that Ψ(f) = Ψ(g). This

implies that

∀ i ∈ [m] ‖f̂i − ĝi‖Ur−1 ≤ ε.

170

By affine invariance of C, f ◦ ` ∈ C for all invertible affine maps ` : Kn → Kn. So

E`E(y1,··· ,yr)∼M[Dy1,··· ,yr(f ◦ `(y1), f ◦ `(y2), · · · , f ◦ `(yr))] ≥ 3/4

where ` ranges over all invertible affine maps from Kn → Kn. Let H ∈ ΣX be a

random word where for each coordinate x ∈ X independently,

H(x) =


f(x) with probability 1/2

g(x) with probability 1/2
.

Define ĥ : X → Nm as ĥ(x) = EH [Ĥ(x)] = f̂(x)+ĝ(x)
2 where f̂ , ĝ are the simplex

extensions of the original f, g. So ∀ i ∈ [m] ‖f̂i− ĥi‖Ur−1 = ‖f̂i− ĝi‖Ur−1/2 ≤ ε/2. We

will now show that the test accepts H ◦ ` with good probability when ` is a random

invertible affine map from Kn → Kn.

EHE`E(y1,··· ,yr)∼M[Dy1,··· ,yr(f ◦ `(y1), · · · , f ◦ `(yr))

−Dy1,··· ,yr(H ◦ `(y1), · · · , H ◦ `(yr))]

= EHE`E(y1,··· ,yr)∼M[D̂y1,··· ,yr(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

− D̂y1,··· ,yr(Ĥ ◦ `(y1), · · · , Ĥ ◦ `(yr))]

= E`E(y1,··· ,yr)∼M[D̂y1,··· ,yr(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

− D̂y1,··· ,yr(ĥ ◦ `(y1), · · · , ĥ ◦ `(yr))]

(using multilinear expansion of D̂y1,··· ,yr(Equation 6.2) and taking expectation over H)

= E(y1,··· ,yr)∼M
[
E`
[
D̂y1,··· ,yr(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

−D̂y1,··· ,yr(ĥ ◦ `(y1), · · · , ĥ ◦ `(yr))
]]

Now we fix y1, · · · , yr and show that inner expectation is small for each tuple

(y1, · · · , yr). Let us denote D = Dy1,··· ,yr for brevity. Let t = rank(y1, · · · , yr), thus

171

there exist independent vectors v1, · · · , vt ∈ Kn such that for every 1 ≤ i ≤ r,

yi = ∑t
j=1 λijvj for some fixed λij ∈ K. The action of a random invertible affine

map ` can be approximated by sampling z0, z1, · · · , zt ∈ Kn uniformly and mapping

yi 7→ z0 +∑t
j=1 λijzj since with probability 1− on(1), z1, · · · , zt will be independent.

Therefore,

E`
[
D̂y1,··· ,yr(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))− D̂y1,··· ,yr(ĥ ◦ `(y1), · · · , ĥ ◦ `(yr))

]
= on(1) + Ez0,··· ,zt∈Kn

D̂(f̂(z0 +
t∑

j=1
λ1jzj), · · · , f̂(z0 +

t∑
j=1

λrjzj))

−D(ĥ(z0 +
t∑

j=1
λ1jzj), · · · , ĥ(z0 +

t∑
j=1

λrjzj))


= Ez0,z1,··· ,zt∈Kn

 ∑
1≤i1,··· ,ir≤m

D(i1, · · · , ir)
 r∏
k=1

f̂ik(z0 +
t∑

j=1
λkjzj)−

r∏
k=1

ĥik(z0 +
t∑

j=1
λkjzj)


≤ r ·mr · ε2 = 1

4

where the last line is obtained by forming hybrids i.e. writing

f̂i1 · f̂i2 · · · f̂ir − ĥi1 · ĥi2 · · · ĥir

= (f̂i1 − ĥi1) · f̂i2 · · · f̂ir + ĥi1 · (f̂i2 − ĥi2) · · · f̂ir + · · ·+ ĥi1 · ĥi2 · · · (f̂ir − ĥir)

and using Lemma 6.2.5 for each term. Therefore

EHE`E(y1,··· ,yr)∼M[Dy1,··· ,yr(H ◦ `(y1), · · · , H ◦ `(yr))]

≥ E`E(y1,··· ,yr)∼M[Dy1,··· ,yr(f ◦ `(y1), · · · , f ◦ `(yr))]−
1
4 ≥

3
4 −

1
4 = 1

2 .

172

By Markov inequality,

1
4 ≤ Pr

H

[
E`E(y1,··· ,yr)∼M[Dy1,··· ,yr(H ◦ `(y1), · · · , H ◦ `(yr))] ≥

1
3

]
≤ Pr

H

[
∃` E(y1,··· ,yr)∼M[Dy1,··· ,yr(H ◦ `(y1), · · · , H ◦ `(yr))] ≥

1
3

]
≤ Pr

H

[
∃` distH(H ◦ `, C)] ≤ δ

3

]
(by the soundness of the tester)

= Pr
H

[
distH(H, C)] ≤ δ

3

]
(since ` is invertible and C is affine invariant)

Let H = supp(H) be the set of words between f and g i.e. the set of all words

e ∈ ΣKn such that e(x) = f(x) or e(x) = g(x) for all x ∈ Kn. Let ∆ = distH(f, g).

We have |H| = 2∆n. Since the distribution of H is uniform in H, we proved that

at least 1
4 fraction of words in H contain a codeword in their δ/3 neighborhood, let

H′ ⊂ H denote this subset. Therefore the δ/6 neighborhoods around the points in H′

must be disjoint or else two distinct codewords will be < δ close to each other. The

number of words in H which lie in a Hamming ball of radius δ/6 around a point of

H′ is
δn/6∑
i=0

(
∆n
i

)
≥ 2H(δ/6∆)∆n−o(n) ≥ 2H(δ/6)∆n−o(n)

where H(·) is the binary entropy function. By a packing argument, we can upper

bound the size of H′ as

|H′| ≤ 2∆n

2H(δ/6)∆n−o(n) = o(|H|).

This contradicts the fact that |H′| ≥ |H|/4.

�

173

6.5 Proof of generalized von Neumann inequality

(Lemma 6.2.5)

Since the lemma is not stated in the form we want in [Tao12], we will include a proof

here for completeness. To prove Lemma 6.2.5, we need the following lemma first.

Lemma 6.5.1 (Exercise 1.3.22 in [Tao12]). Let f : Kn → C be a function, and for

each 1 ≤ i ≤ k, let gi : (Kn)k → C be a bounded function which is independent of the

ith coordinate of (Kn)k. Then,

|Ex1,··· ,xk∈Kn [f(x1 + x2 + · · ·+ xk)
k∏
i=1

gi(x1, · · · , xk)]| ≤ ‖f‖Uk

174

Proof. The proof is by induction on k and using Cauchy-Schwarz inequality repeat-

edly. The case k = 1 is true by definition of ‖ · ‖U1 .

∣∣∣∣∣Ex1,··· ,xk∈Kn

[
f(x1 + x2 + · · ·+ xk)

k∏
i=1

gi(x1, · · · , xk)
]∣∣∣∣∣

=
∣∣∣∣∣Ex2,··· ,xk

[
g1(x1, · · · , xk)Ex1

[
f(x1 + x2 + · · ·+ xk)

k∏
i=2

gi(x1, · · · , xk)
]]∣∣∣∣∣

(since g1 doesn’t depend on x1)

≤
∣∣∣∣∣Ex2,··· ,xk

[
Ex′1

[
f(x′1 + x2 + · · ·+ xk)

k∏
i=2

gi(x′1, x2, · · · , xk)
]

·Ex1

[
f̄(x1 + x2 + · · ·+ xk)

k∏
i=2

ḡi(x1, x2, · · · , xk)
]]∣∣∣∣∣

1/2

(By Cauchy-Schwarz inequality and the fact that |g1| ≤ 1)

= |Ex1,h1 [Ex2,··· ,xk [∆h1f(x1 + x2 + · · ·+ xk)

·
k∏
i=2

gi(x1 + h1, x2, · · · , xk)ḡi(x1, x2, · · · , xk)
]]∣∣∣∣∣

1/2

(By substituting x′1 = x1 + h1)

≤
∣∣∣Ex1,h1

[
Eh2,··· ,hk,z [∆hk · · ·∆h1f(x1 + z)]1/2

k−1]∣∣∣1/2
(By induction hypothesis and the definition of Gowers norm)

≤ |Ex1,h1,h2,··· ,hk,z [∆hk · · ·∆h1f(x1 + z)]|1/2
k

(By Jensen’s inequality)

= |Eh1,h2,··· ,hk,z [∆hk · · ·∆h1f(z)]|1/2
k

= ‖f‖Uk

�

Proof of Lemma 6.2.5. By symmetry, it is enough to show that

|Ez1,··· ,zm∈Kn [f0(L0(z1, · · · , zm))
k∏
i=1

fi(Li(z1, · · · , zm))]| ≤ ‖f0‖Uk .

We will make a linear change of variables so that we can use Lemma 6.5.1 to get the

required bound. For each 1 ≤ i ≤ k, since L0 is not a multiple of Li, there exists

175

a vector vi ∈ Km such that L0(vi) = 1 and Li(vi) = 0. Now we make the following

change of variables: (z1, · · · , zm) → (x1, · · · , xm) + ∑k
i=1 yiv

T
i where x1, · · · , xm and

y1, · · · , yk are the new variables which range over Kn.

|Ez1,··· ,zm∈Kn [f0(L0(z1, · · · , zm))
k∏
i=1

fi(Li(z1, · · · , zm))]|

=

∣∣∣∣∣∣Ex1,··· ,xm,y1,··· ,yk∈Kn

f0

L0(x1, · · · , xm) +
∑
j∈[k]

yj


∏
i∈[k]

fi

Li(x1, · · · , xm) +
∑

j∈[k]\{i}
yjLi(vj)

∣∣∣∣∣∣
(By change of variables and linearity of Li)

≤ Ex1,··· ,xm∈Kn

∣∣∣∣∣∣Ey1,··· ,yk∈Kn

f0

L0(x1, · · · , xm) +
∑
j∈[k]

yj


∏
i∈[k]

fi

Li(x1, · · · , xm) +
∑

j∈[k]\{i}
yjLi(vj)

∣∣∣∣∣∣


≤ ‖f0‖Uk (By Lemma 6.5.1)

�

6.6 Conclusions

In this work, we proved tight lower bounds for constant query affine-invariant LCCs

and LTCs when the number of queries r, underlying field K and the alphabet Σ

are constant. However the constants in the bounds we obtain are of Ackermann-

type in r, |K|, |Σ| because of the use of higher-order Fourier analysis. Improving

the dependence on these parameters is an open problem which might require new

ideas. In a recent work, Bhowmick and Lovett [BL15] obtain a “bias implies low

rank” theorem for polynomials over growing fields. This might be a first step towards

proving a variant of the inverse Gowers theorem (Lemma 6.2.4) for growing field size,

176

which could then be used to make our lower bounds extend to the case of growing

field size.

We also remark that our lower bounds work for any LCC or LTC where the queries

are obtained as fixed linear combinations of uniformly chosen points from Kn. Affine-

invariant codes are a natural class of local codes where this is true. Relaxing these

conditions to get lower bounds for a more general class of LCCs or LTCs is an open

problem.

177

Chapter 7

Lower bounds for 2-query LCCs

7.1 Introduction

One particularly important feature of LDCs is their tight connection to information-

theoretic private information retrieval (PIR) schemes as discussed in Section 3.2. A

2-server PIR scheme for k bits of data with s bits of communication translates to a

2-query LDC C : {0, 1}k → Σ2s where Σ = {0, 1}s. Note that in this translation, |Σ|

equals the length of the code. Conversely, a 2-query LDC C : {0, 1}k → Σn implies

a 2-server PIR with communication cost O(log n+ log |Σ|). Since a 2-query LCC can

be converted into a 2-query LDC with similar parameters as shown in Section 2.4.1,

one can obtain 2-server PIR schemes from good LCCs as well.

Let C : {0, 1}k → Σn be a 2-query LDC/LCC such that the corrector algorithm can

tolerate corruptions at δn positions. Katz and Trevisan in their seminal work [KT00]

showed that for 2-query LDCs, n ≥ Ω(δ(k/ log |Σ|)2). (Since LDCs are weaker than

LCCs, a lower bound on the length of LDCs also implies a lower bound on the length

of LCCs). More than 15 years later, the Katz-Trevisan bound is still the best known

for large alphabet Σ. However for small alphabet size, the dependence on k is shown

to be exponential. Goldreich et al. [GKST06] showed that n ≥ exp(δk/|Σ|) for linear

178

2-query LDCs, while Kerenedis and de Wolf [KW04] (with further improvements in

[WDW05b]) showed using quantum techniques that n ≥ exp(δk/|Σ|2) for arbitrary

2-query LDCs. But these lower bounds become trivial when |Σ| = Ω(n). However,

the case of large alphabet |Σ| ≈ n is quite important to understand as this is the

regime through which we would be able to prove lower bounds on the communication

complexity of PIR schemes.

Given the lack of progress on LDC and PIR lower bounds, it is a natural question

to ask whether strong lower bounds are possible for LCCs. In this work, we demon-

strate an exponential improvement on the Katz-Trevisan bound for zero-error LCCs.

We define a zero-error LCC to be an LCC as defined in Section 2.4 for which the

corrector succeeds with probability 1 when the input is an uncorrupted codeword.

All current LCC constructions are zero-error, and in fact, any linear LCC can be

made zero-error. We will define them formally before stating our result.

Definition 7.1.1. Let Σ be some finite alphabet. For positive integer n and parame-

ters η, δ > 0, a subset C ⊂ Σn is a (2, δ, η)-zero-error LCC if, for every i ∈ [n], there

exists a randomized corrector (a probabilistic algorithm) Ai such that:

1. For every codeword c ∈ C and z ∈ Σn such that distH(c, z) ≤ δ,

Pr[Ai(z) = ci] ≥ Pr[Ai(z) = σ] + η, (7.1)

for any σ ∈ Σ such that σ 6= xi.

2. The decoder Ai(z) queries non-adaptively at most 2 coordinates of z.

3. If c ∈ C, then for every i ∈ [n], Pr[Ai(c) = ci] = 1 i.e. if the received word has

no errors, then the local correction algorithm will not make any error.

Note that the above definition differs from the standard notion of non-adaptive

2-query LCCs from Section 2.4 only in part (3) above. Whenever η is not mentioned,
179

we assume that it is some fixed absolute constant. We now state our main lower

bound for zero-error 2-query LCCs.

Theorem 7.1.2. Let C ⊂ Σn be a (2, δ, η)-LCC which is zero-error, then

|C| ≤ exp
(
O
((

1
δ4 + log(1/η)

η2δ2

)
· log n · log |Σ|

))
.

7.1.1 Discussion of Main Result

The lower bound in Theorem 7.1.2 is tight in its dependence on k and Σ. Specifically,

Yekhanin in the appendix of [BDSS16] gives the following elegant construction of

a 2-query LCC C : {0, 1}k → Σn with n = 2O(k/ log |Σ|) for any δ ≤ 1/6,Σ and k.

Assume |Σ| = 2b and b | k for simplicity. Write x ∈ {0, 1}k as (xi,j)i∈[b],j∈[k/b]. Then,

for any a ∈ [2k/b], let (C(x))a = (H(xi,1, . . . , xi,k/b)a : i ∈ [b]) ∈ {0, 1}b where H is

the classical Hadamard encoding H : {0, 1}r → {0, 1}2r defined as H(y) = (∑r
i=1 yiξi

(mod 2) : ξ1, . . . , ξr ∈ {0, 1}). It is well-known thatH is a 2-query LCC, and from this,

it is easy to check that C is also. The parameters follow directly from the construction.

A simple modification of this construction gives (2O(δk/ log |Σ|)/δ)-length 2-query LCCs

that tolerate δn corruptions. The proof of Theorem 7.1.2 shows n ≥ exp(δ4k/ log |Σ|)

which is therefore tight upto poly(δ) factors in the exponent.

The 2-query LCC described above is a linear code over F2b . For linear codes

C ⊆ Fnq (i.e., C is a linear subspace of Fnq), where q = pr for a prime p, [BDSS16]

showed that n ≥ exp(δk/r) = exp(δk/ logp |Σ|) where k = log |C| is the message

length and |Σ| = pr. Thus, in terms of dependence on k and |Σ|, we extend the

result of [BDSS16] from linear codes to all zero-error LCCs. Moreover, this work is

much more elementary and simple than [BDSS16] which uses non-trivial results from

additive combinatorics.

It is important to note that Theorem 7.1.2 cannot be true for 2-query LDCs.

Such a result would contradict the construction in Theorem 3.2.1 of a zero-error 2-
180

query LDC with log n = log |Σ| = exp(
√

log k) = ko(1) and δ = Ω(1). So, our result

can be interpreted as giving a separation between zero-error LCCs and LDCs over

large alphabet. We conjecture that the zero-error restriction in the theorem can be

removed, which if true, would yield the first separation between general LCCs and

LDCs over large alphabet. It is still quite unclear what the correct lower bound for

2-query LDCs should look like. As mentioned above, Katz and Trevisan [KT00] show

that n ≥ Ω(δk2/ log2 |Σ|). And the quantum arguments of [KW04, WDW05b] give

the lower bound n ≥ exp(δk/|Σ|2) which becomes trivial when |Σ| = Ω(n).

7.1.2 Proof Overview

Like most prior work on 2-query LDCs and LCCs, we view the query distribution

of the local correcting algorithm as a graph. However, these previous works did not

exploit the structure of the graph much beyond its size and degree, whereas our bound

is due to a detailed use of the graph structure.

Let C : {0, 1}k → Σn be a 2-query LCC. So, for every i ∈ [n], there is a corrector

algorithm Ai that when given access to z ∈ Σn with Hamming distance at most

δn from some codeword y, returns yi with probability at least 2/3. Assuming non-

adaptivity, the algorithm Ai chooses its queries from a distribution on [n]2. Katz and

Trevisan [KT00] show how to extract a matching Mi of Ω(δn) disjoint edges on n

vertices such that for any edge e = (j, k) in Mi,

Pr
y

[Ai(y) = yi | A queries y at positions j and k] > 1
2 + ε

for some constant ε > 0, where the probability is over a uniformly random codeword

y ∈ C. For zero-error LCCs, the situation is simpler in that essentially, for every

codeword y and edge e ∈Mi, Ai(y) returns yi when it queries the elements of e. This

is not exactly correct but let us suppose it’s true for the rest of this section.

181

Let G be the union of M1, . . . ,Mn. So, for every edge (j, k) in G, there is an i

such that (j, k) ∈Mi. Suppose our goal is to guess an unknown codeword c given the

values of a small subset of coordinates of c. We assign labels in Σ to vertices of G

corresponding to the subset of coordinates of c that we know already. Now, imagine

a propagation process where we deduce the labels of unlabeled vertices by using the

corrector algorithms. For example, if (j, k) ∈Mi, j and k are labeled but i is not, we

can use Ai to deduce the label at vertex i. Similarly, if (x, y) ∈Mu and (u, v) ∈Mw,

and x, y, v are labeled but u and w are not, we can run Au to deduce the label of u and

then Aw to deduce the label of w. The set of labels we infer will be the values of c at

the corresponding coordinates. The goal of our analysis is to show that there is a set

S of Oδ(log n)1 vertices such that if the labels of S are known, then the propagation

process can determine the labels of all n vertices. This immediately implies that the

total number of codewords, 2k, is at most |Σ||S| and therefore, k = Oδ(log n · log |Σ|).

Instead, Katz and Trevisan [KT00] show that if you know the labels of
√
n uniformly

random coordinates, then you can recover the labels of most of the coordinates which

leads to the bound k = Oδ(
√
n · log |Σ|). Intuitively, their lower bound is just one

step of the propagation process.

The propagation process is perhaps more naturally described on a (directed) 3-

uniform hypergraph where there is an edge (i, j, k) if (j, k) ∈ Mi. It “captures” i

if (i, j, k) is an edge and j, k are already captured. Coja-Oghlan et al. [COOW12]

study exactly this process on random undirected 3-uniform hypergraphs in the con-

text of constraint satisfaction problem solvers. Unfortunately, their techniques are

specialized to random hypergraphs. The propagation process is also related to hyper-

graph peeling [MT12, MW15], but again, most theoretical work is limited to random

hypergraphs.
1Oδ(·) means that the involved constant can depend on δ.

182

To motivate our approach, suppose M1, . . . ,Mn are each a perfect matching. For

a set S ⊆ [n], let R(S) denote the set of vertices to which we can propagate starting

from S. If R(S) = [n], we are done. Otherwise, we show that we can double |R(S)|

by adding one more vertex to S. Note that for any i /∈ R(S), no edge in Mi can lie

entirely inside R(S), for then, i would also have been reached. So, each vertex in

R(S) must be incident to one edge in Mi for every i /∈ R(S). This makes the total

number of edges between R(S) and [n] \ R(S) belonging to Mi for some i 6∈ R(S)

equal to |R(S)| · (n− |R(S)|). By averaging, there must be j /∈ R(S) that is incident

to at least |R(S)| edges, each belonging to some Mi for i /∈ R(S). Moreover, all these

|R(S)| edges must belong to matchings of different vertices. Hence, adding j to S

doubles the size of R(S). Hence, for some S of size O(log n), R(S) = [n].

In the above special case (where all the matchings were perfect), we used the fact

that the size of the cut between R(S) and the rest of the graph is large and that many

of these edges belong to Mi for i 6∈ R(S). We observe that for any graph obtained

from an LCC as above, this situation exists whenever R(S) is not too large already

and the minimum degree of every vertex in the graph is large (say, poly(δ) · n). This

is because each vertex in R(S) will be incident to many edges in matchings Mi for

i /∈ R(S) (using the minimum degree requirement and that |R(S)| is small) and such

edges cannot have both endpoints inside R(S) (as then i ∈ R(S)). So, indeed, there

will be many edges with labels not in R(S) crossing the cut, and averaging will yield a

vertex whose addition to S will make R(S) grow by a multiplicative factor. Therefore,

if the minimum degree requirement is met, we can keep repeating this process until

R(S) becomes large, of size poly(δ) · n. Now, in a key lemma of our proof, we show

that for any graph obtained from an LCC as above, we can greedily find a subset

of the vertices V ′ such that the the subgraph induced by the vertices of V ′ and the

edges labeled by V ′ has large minimum degree. So, we can repeatedly apply the above

183

argument to V ′ to find a subset S of size Oδ(log n) such that R(S) contains poly(δ) ·n

vertices.

Recall that our goal is to find a small set S such that R(S) = [n]. So, at this stage,

we would ideally like to continue the argument on V ′′ = [n]\R(S). The only issue we

can face is that the graph on V ′′ restricted to edges labeled by V ′′ may not have the

LCC structure. Indeed, it could be that most edges labeled by V ′′ are not spanned by

vertices in V ′′. However in this case, there will be a vertex u in V ′′ incident to many

V ′′-labeled edges that have their other endpoints in R(S), so that we can increase

R(S) by adding u to S. Thus, either R(S) may be grown directly or else the rest of

the vertices looks approximately like an LCC, so that we can recurse. Modulo some

important technical details, our proof is now complete.

The zero-error assumption seems necessary to make the propagation process well-

defined. Otherwise, for each labeled vertex, there is some probability that the label

is incorrect for the codeword in question. But since there may be Ω(log n) = ω(1)

steps of propagation, the error probability may blow up by this factor. So, it seems

we need different techniques to handle correctors that have constant probability of

error when the input is a codeword. One possibility is using information theory to

better handle the spread of error2.

7.2 Matching lemma for zero-error LCCs

We next show that the corrector for any zero-error LCC can be brought into a “nor-

mal” form. A similar statement is known for general LDCs and LCCs [KT00, Yek12]

but we need to be a bit more careful because we want to preserve the zero-error prop-

erty. Note that the proof overview in Section 7.1.2 assumed that the set T1 below is

empty.
2This approach is taken in [Jai06] to prove an exponential lower bound for smooth 2-query LDCs

over binary alphabet when the decoder has subconstant error probability. Jain’s analysis seems to
work only for binary codes but is similar in spirit to ours.

184

Lemma 7.2.1. Let C ⊂ Σn be a (2, δ, η)-LCC with zero error. Then, there exists a

partition of [n] = T1 ∪ T2 such that:

1. For every i ∈ T1, there exists a distribution Di over [n] ∪ {φ} and algorithms

Ri
j for every j ∈ [n] ∪ {φ} such that for every codeword c ∈ C,

Pr
j∼Di

[
Ri
j(cj) = ci

]
≥ Pr

j∼Di

[
Ri
j(cj) = σ

]
+ η

for any σ ∈ Σ such that σ 6= ci
3. Moreover the distribution Di is smooth over

[n] i.e. for every j ∈ [n], PrDi [j] ≤ 4
δn

.

2. For every i ∈ T2, there exists a matching Mi of edges in [n] \ {i} of size

|Mi| ≥ δ
4n such that: For every c ∈ C, ci can be recovered from (cj, ck) for any

(j, k) ∈ Mi i.e. there exists algorithms Ri
j,k for every edge (j, k) ∈ Mi such

that for every c ∈ C,

Ri
j,k(cj, ck) = ci.

Proof. Fix ε = δ/4. Let Ai be the local corrector algorithm of C for i ∈ [n] and let

Qi be the distribution over 2-tuples of [n] corresponding to the queries Ai makes to

correct coordinate i.4 Let supp(Qi) be the set of edges in the support of Qi. We have

two cases:

Case 1: supp(Qi) contains a matching of size εn.

In this case, we include i ∈ T2 and defineMi to be a matching of size εn in supp(Qi).

Let Ri
j,k(zj, zk) be the output5 of Ai(z) when it samples (j, k) from the distribution

Qi. So we have for every σ ∈ Σ,

Pr
(j,k)∼Qi

[Ri
j,k(zj, zk) = σ] = Pr[Ai(z) = σ].

3Here cφ is an empty input defined for ease of notation.
4Wlog, we can assume Ai always queries two coordinates.
5Note that Rij,k might use additional randomness.

185

Now since our LCC is zero-error, for every (j, k) ∈ supp(Qi), we haveRi
j,k(cj, ck) = ci.

This takes care of part (2).

Case 2: supp(Qi) doesn’t contain a matching of size εn.

In this case we include i ∈ T1. Since supp(Qi) doesn’t contain a matching of size εn,

there exists a vertex cover of size at most 2εn, say Vi. Also define Bi ⊂ [n] to be the

set of vertices which are queried with high probability by Ai(z) i.e.

Bi =
{
j : Pr[Ai(z) queries j] ≥ 1

εn

}
.

Clearly |Bi| ≤ 2εn because Ai(z) makes at most two queries.

We now define a new one-query corrector for i, Ãi(z) as follows: simulate Ai(z),

but whenever Ai(z) queries z at a coordinate in Vi ∪ Bi, Ãi(z) doesn’t query that

coordinate and assumes that the queried coordinate is 0 (or some fixed symbol in

Σ). Note that Ãi(z) makes at most one query to z since Vi is a vertex cover for the

support of Qi. Also Ãi(c) behaves exactly like Ai(c′) where c′ is the word formed by

zeroing out the Vi ∪Bi coordinates of c. Since |Vi ∪Bi| ≤ 4εn ≤ δn, we have

Pr[Ãi(c) = ci] = Pr[Ai(c′) = ci] ≥ Pr[Ai(c′) = σ] + η = Pr[Ãi(c) = σ] + η

for any σ ∈ Σ such that σ 6= ci. Now define the distribution Di over [n] ∪ {φ} as:

Pr
Di

[j] = Pr[Ãi(z) queries j]

for j ∈ [n] and

Pr
Di

[φ] = Pr[Ãi(z) doesn’t make any query].

Since we never query elements of Bi, we have the required smoothness i.e. PrDi [j] ≤

1/(εn) for all j ∈ [n]. Also define Ri
j(zj) to be the output (can be randomized) of

Ãi(z) when it queries j ∈ [n] and Ri
φ(cφ) to be the output (can be randomized) of

186

Ãi(z) when it doesn’t make any query where cφ is an empty input defined for ease of

notation. By definition, we have

Pr
j∼Di

[Ri
j(cj) = σ] = Pr[Ãi(c) = σ]

for any σ ∈ Σ. This proves part (1). �

7.3 Proof of lower bound

7.3.1 An information theoretic lemma

The proof of Theorem 7.1.2 works by showing that there is randomized algorithm

which can guess an unknown codeword c ∈ C ⊂ Σn with high probability by making

a small number of queries. From this we would like to show that |C| cannot be large.

We will apply Fano’s inequality which is a basic information theoretic inequality to

achieve this. We will assume familiarity with basic notions in information theory; we

refer the reader to [CT12] for precise definitions and the proofs of the facts we use.

Given random variables X, Y, Z, let H(X) be the entropy of X which is the amount

of information contained in X. H(X|Y) is the conditional entropy of X given Y

which is the amount of information left in X if we know Y . The mutual information

I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X) is the amount of common information

between X, Y . If X, Y are independent, then I(X;Y) = 0. The conditional mutual

information I(X;Y |Z) is the mutual information between X, Y given Z. We have

the following chain rule for mutual information:

I(X;Y Z) = I(X;Z) + I(X;Y |Z).

187

We also need the following basic inequality:

I(X;Y |Z) ≤ H(X|Z) ≤ log |X |

where X is the support of the random variable X. We will now state Fano’s inequality

which says that if we can predict X very well from Y i.e. there is a predictor X̂(Y)

such that Pr[X̂(Y) 6= X] ≤ pe where pe is small, then H(X|Y) should be small as

well (see [CT12] for a proof). More precisely,

H(X|Y) ≤ h(pe) + pe log(|X | − 1) (Fano’s inequality)

where h(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function and X is

the support of random variable X.

Lemma 7.3.1. Suppose there exists a randomized algorithm P such that for every

c ∈ C ⊂ Σn, given oracle access to c, P makes at most t queries to c and outputs c

with probability ≥ 1/2, then log |C| ≤ O(t log |Σ|).

Proof. Let X be a random variable which is uniformly distributed over C. Let R

be the random variable corresponding to the random string of the algorithm P and

let S(R) be the set of coordinates queried by P when the random string is R. We

can guess the value of X with probability ≥ 1/2 given XS(R), R where XS(R) is the

restriction of X to S(R). By Fano’s inequality,

H(X | XS(R), R) ≤ h(1/2) + 1
2 · log(|C| − 1) ≤ 1 + 1

2 log |C|.

188

We can bound the mutual information between X and XS(R),R as follows:

I(X;XS(R), R) = I(X;R) + I(X;XS(R)|R) (Chain rule for mutual information.)

≤ 0 +H(XS(R)|R) (Since X and R are independent.)

≤ t log |Σ|.

But we also have

I(X;XS(R), R) = H(X)−H(X|XS(R), R) ≥ log |C| − 1
2 log |C| − 1 ≥ 1

2 log |C| − 1.

Combining the upper and lower bound for I(X;XS(R), R), we get the required bound.

�

7.3.2 Proof of Theorem 7.1.2

We will construct a randomized algorithm P such that for every c ∈ C, given oracle

access to c, P makes at most O(1
δ4 · log n) queries to c and outputs c with probability

≥ 1− 1/n. By Lemma 7.3.1, we get the required bound.

Let [n] = T1 ∪ T2 be partition of coordinates given by Lemma 7.2.1.

Claim 7.3.2. Algorithm P can learn c|T1 with probability ≥ 1 − 1/n by querying a

uniformly random (sampled with repetitions) subset S of size r = O(1
δ2η2 · log(n/η)).

Proof. Let S = {Z1, · · · , Zr} where each Zi is a uniformly random element of [n].

By Lemma 7.2.1, for every u ∈ T1, we have a smooth distribution Du over [n] and

algorithmsRu
v for every v ∈ [n]. Let’s fix u ∈ T1 and let pv = PrDu [v]. By smoothness,

pv ≤ 4
δn

for every v ∈ [n]. The algorithm P estimates cu as follows: Define the weight

of σ to be

Wσ = pφ · Pr[Ru
φ = σ] + 1

r

r∑
i=1

npZi · Pr[Ru
Zi

(cZi) = σ]

189

and output the symbol with the maximum weight. We will show that

Pr[P guesses cu incorrectly] ≤ 1
n2 .

For σ ∈ Σ and v ∈ [n] ∪ {φ}, let fσv = Pr[Ru
v(cv) = σ]. The weight of σ is given by

Wσ = pφf
σ
φ + 1

r

r∑
i=1

npZif
σ
Zi
.

We can calculate the expected value of the weight as

E[Wσ] = pφf
σ
φ + E[npZ1f

σ
Z1]

= pφ Pr[Ru
φ(cφ) = σ] +

∑
v∈[n]

pv Pr[Ru
v(cv) = σ] = Pr

v∼Du
[Ru

v(cv) = σ].

Therefore Wσ is an unbiased estimator for Prv∼Du [Ru
v(cv) = σ]. By Lemma 7.2.1,

E[Wcu] ≥ E[Wσ] + η

for any σ ∈ Σ such that σ 6= cu. Now we will show that no other symbol can have

higher weight than Wcu except with probability 1
n2 . Fix some S ⊂ Σ. Let us consider

the random variable W (S) = ∑
σ∈SWσ.

∑
σ∈S

Wσ =
∑
σ∈S

pφf
σ
φ + 1

r

r∑
i=1

npZi
∑
σ∈S

fσZi

= pφ
∑
σ∈S

Pr[Ru
φ = σ] + 1

r

r∑
i=1

npZi
∑
σ∈S

Pr[Ru
Zi

(cZi) = σ]

= pφ Pr[Ru
φ ∈ S] + 1

r

r∑
i=1

npZi Pr[Ru
Zi

(cZi) ∈ S]

190

Note that this implies that E[W (Σ)] = pφ + E[npZ1] = 1. By smoothness, npZi ≤ 4
δ
,

so by applying Hoeffding’s inequality,

Pr
[
|W (S)− E[W (S)]| ≥ η

100

]
≤ exp

(
−Ω(rδ2η2)

)
. (7.2)

Denote the expected weight of a symbol by wσ = E[Wσ] and for S ⊂ Σ, denote the

expected weight of symbols in S by w(S) = ∑
σ∈S E[Wσ]. We know that w(Σ) = 1

and wcu ≥ wσ + η for every σ 6= cu.

Let S1 ∪ S2 ∪ · · · ∪ St be a partition of Σ \ {cu} with smallest t such that for each

Si,

w(Si) ≤ wcu −
η

2 .

By minimality of t, all but one parts should have w(Si) ≥ η/4. Because if there are

two parts with weight < η/4, we can merge them and the weight of the union is

< η/2 ≤ wu − η/2, this contradicts the minimality of t. Since the total weight is at

most 1, t = O(1/η).

To show that Wcu ≥ Wσ for every σ 6= cu w.p ≥ 1−1/n2, it is enough to show that

for every part Si, Wcu ≥ W (Si) w.p. 1 − 1/n2. Therefore by applying Equation 7.2

for each part Si and then applying a union bound over the t = O(1/η) parts,

Pr
[
Wcu ≤ max

σ 6=cu
Wσ

]
≤ t exp(−Ω(rδ2η2)) ≤ 1

n2

if r � 1
η2δ2 log(n/η). Therefore with probability ≥ 1 − 1

n2 , cu will be the symbol

with maximum weight and the algorithm P will guess cu correctly with probability

≥ 1− 1
n2 . By union bound, we get that P can guess cu correctly for all u ∈ T1 with

probability ≥ 1− 1
n
. �

We will now show that after learning c|T1 , P can now learn c|T2 by querying a

further Oδ(log n) coordinates from c and this process will be deterministic i.e. no

191

further randomness is needed. Define R(S) to be the set of coordinates of c that

can be recovered correctly given c|S. In Claim 7.3.2, we have shown that if S is a

randomly chosen subset of size Oδ,η(log n), then T1 ⊆ R(S) with probability ≥ 1− 1
n
.

From now on we assume that P has already recovered coordinates of T1 correctly i.e.

T1 ⊆ R(S). If T2 ⊆ R(S) then we are done, the algorithm P can output the entire c

with probability ≥ 1− 1
n
. So we can assume that T2 * R(S). Our goal is to show that

we can add a further O(poly(1/δ) · log n) vertices to S and have R(S) = V = T1 ∪T2.

We show that this is indeed the case in the next section by proving the following

claim, which completes the proof.

Claim 7.3.3. There exists a set S of size O((1/δ)4 · log n) such that R(S ∪ T1) = V .

7.3.3 Proof of Claim 7.3.3

Claim 7.3.3 is purely graph theoretical. Let G = (V,E) be the graph with V = [n] =

T1 ∪ T2 and E = ∪i∈T2Mi where Mi are partial matchings of size at least (δ/4)n

given by Lemma 7.2.1. Let δ := δ/4. We will label each edge in E with a label in T2

indicating which matching it belongs to. We can have parallel edges in E, but they

will have different labels since they belong to different matchings. Recall that R(S)

is the set of coordinates of c that can be inferred from c|S. Lemma 7.2.1 implies the

following closure property for R(S): if (i, j) ∈ Mk and i, j ∈ R(S) then k ∈ R(S).

Next, we define R(S) formally based on the graph G using this closure property.

Definition 7.3.4. Let G = (V,E) as above. Let S ⊆ V . We define the set RG(S) ⊆ V

to be the smallest set of vertices such that:

1. S ⊆ RG(S)

2. For all i, j ∈ RG(S) and k ∈ [n], if (i, j) ∈ Mk, then k ∈ RG(S). (In words, if

there exists an edge (i, j) in the graph G labeled with k and both i and j are in

RG(S), then so is k.)
192

(When the context is clear, we will use R(S) instead of RG(S).) Our goal is to

show that in any graph G as above, there exists a set S ⊆ V of size poly(1/δ) · log(n)

such that RG(S ∪ T1) = V . As a first step, we get rid of the set T1, by showing that

proving the claim in the case T1 = ∅ implies Claim 7.3.3 for any other set. To see that

observe that if we take G′ to be the union of G with a collection of partial matching

{Mj}j∈T1 , then RG′(S) ⊆ RG(S∪T1) for any set S ⊆ V . Thus, it suffices to introduce

dummy matchings {Mj}j∈T1 for each Mj of size δn, and prove that there exists a

set S of size poly(1/δ) · log(n) such that RG′(S) = V .

Claim 7.3.5 (Claim 7.3.3, case T1 = ∅, restated). Let G = (V,E) be a graph with

V = [n] and E =M1 ∪ · · · ∪Mn where each Mi is a partial matching of size at least

δn. Then, there exists a subset S ⊆ V of size O((1/δ)4 · log n) such that RG(S) = V .

From here henceforth we assume (without loss of generality) that T1 = ∅ and

T2 = [n], and prove Claim 7.3.5. The following lemma tells us that we can find a

subgraph G′ of G such that each vertex in G′ has high degree. Note that the lemma

finds a subgraph restricted to a set of vertices V ′, and also restricted to the set of

edges labeled with V ′.

We shall use this lemma inductively. During induction, we will remove some edges

from the matchings. Thus, instead of asserting that all matchings are of size at least

δ|V |, we assume that all but 0.1δ|V | of the matchings have at least 0.9δ|V | edges.

Lemma 7.3.6 (Clean-Up Lemma). Let G = (V,E) be a graph with a finite set of

vertices V and E = ⋃
i∈V Mi, where each Mi is a partial matching on V . Assume

all but 0.1δ|V | of the matchings Mi have size at least 0.9δ|V |. Then, there exists a

subset V ′ ⊆ V of size at least δ · |V | so that the graph G′ = (V ′, E ′) where E ′ =⋃
i∈V ′Mi ∩ (V ′ × V ′) has minimal degree at least (δ2/4) · |V |.

Proof. We find the set V ′ greedily. Let δ′ := δ2/4. Initialize V ′ = V . If the minimum

degree in the remaining graph on V ′ is at least δ′ · |V | then we stop. Otherwise,
193

remove the vertex i ∈ V ′ with minimal degree, and remove all edges labeled i. We

repeat this process until no vertices of degree smaller than δ′ · |V | exist.

If the process stopped when |V ′| ≥ δ|V | then we are done. We are left to show

that the process cannot proceed past this point. Let’s assume by contradiction that

we can continue the process after this point. As we decrease the size of V ′ by one

in each iteration, we must reach at a certain point of the process to a set of vertices

V ′ = V ∗ of size exactly δ|V |. Denote by

E∗(V ′) :=
⋃
i∈V ∗
Mi ∩ (V ′ × V ′).

Next, we upper and lower bound |E∗(V ∗)| to derive a contradiction.

The upper bound |E∗(V ∗)| ≤ |V ∗| · |V ∗|/2 follows since the edges E∗(V ∗) form

a collection of |V ∗| partial matchings on V ∗. To lower bound |E∗(V ∗)| we use the

properties of the greedy process. The initial size of the set E∗(V ′) (when V ′ = V) is

at least 0.9δ|V | · (|V ∗|−0.1δ|V |) ≥ 0.92δ2 · |V |2. In every iteration, we remove at most

δ′|V | edges from this set of edges. As there are at most |V | steps, we are left with at

least 0.92δ2|V |2 − δ′|V |2 edges, i.e., |E∗(V ∗)| ≥ 0.92δ2|V |2 − δ′|V |2. Combining both

upper and lower bounds on |E∗(V ∗)| gives

1
2 · δ

2 · |V |2 ≥ |E∗(V ∗)| ≥ (0.92δ2 − δ′) · |V |2 = (0.92δ2 − δ2/4) · |V |2

which yields a contradiction since 1/2 < 0.92 − 1/4. �

Lemma 7.3.7 (Exponentially growing a set of known coordinates). Let G = (V,E)

be a graph with V and E = ⋃
i∈V Mi such that each v ∈ V has degree at least d. Then,

there exists a subset S ⊆ V of size at most O((|V |/d) · log |V |) with |R(S)| ≥ d/2.

Proof. We pick the set S ⊆ V iteratively, picking one element in each step. We start

with S = {v} for some arbitrary v ∈ V .

194

Assume we picked t elements so far for the set S. If |R(S)| ≥ d/2, then we are

done. Otherwise, by the definition of R(S), for any i ∈ V \R(S), none of the edges in

the matching Mi is inside R(S). We wish to show that there exists an i ∈ V \R(S)

with many edges into R(S) marked with labels outside R(S). Then, we will add i to

S, which will reveal a lot of new coordinates.

For two disjoint sets of vertices A,B ⊆ V we denote by E(A,B) the set of edges

between A and B in the graph G. If A consists of one element, i.e., A = {a} we

denote E(a,B) = E(A,B). Let A = R(S). Let B = V \ A. We have

∣∣∣∣∣E(A,B) ∩
⋃
i∈B
Mi

∣∣∣∣∣ =
∑
a∈A

∣∣∣∣∣E(a,B) ∩
⋃
i∈B
Mi

∣∣∣∣∣ =
∑
a∈A

∣∣∣∣∣E(a, V \ {a}) ∩
⋃
i∈B
Mi

∣∣∣∣∣ (7.3)

where the last equality follows since there are no edges labeled i ∈ B between any

two vertices in A. For each a ∈ A there are at least d edges touching a and at most

|A| of them appeared in ⋃i∈AMi, hence |E(a, V \ {a}) ∩ ⋃i∈BMi| ≥ d− |A| ≥ d/2.

Plugging this estimate to Eq. (7.3) gives

∣∣∣∣∣E(A,B) ∩
⋃
i∈B
Mi

∣∣∣∣∣ ≥ |A| · d/2 .
By averaging there exists a vertex b ∈ B with at least |A| · d

2|V | edges to A labeled

with B. So as long as |A| = |R(S)| ≤ d/2 we are extending the set R(S) by at

least |R(S)| · d
2|V | elements, i.e. by a multiplicative factor of (1 + d

2|V |). Hence, after

t iterations, either |R(S)| ≥ (1 + d
2|V |)

t or |R(S)| ≥ d/2. Taking t = O(|V |
d
· log |V |)

gives that after at most t iterations |R(S)| ≥ d/2. �

Lemma 7.3.8 (Covering 1− δ fraction of the coordinates implies covering all coor-

dinates). Let G = (V,E) be a graph with V = [n] and E =M1 ∪M2 ∪ . . .∪Mn and

each Mi is a partial matching of size at least δn. Let S ⊆ V . If |R(S)| > (1 − δ)n,

then R(S) = V .

195

Proof. Let v ∈ V . We show that there is an edge inside R(S) marked v. Indeed, there

are at least δn edges labeled v and they form a partial matching. If |V \R(S)| < δn,

one of these edges do not touch (V \R(S)), i.e., it is an edge connecting two vertices

in R(S). �

Lemma 7.3.9 (Two Cases). Let G = (V,E) be a graph with V = [n] and E =

M1 ∪M2 ∪ . . . ∪Mn where each Mi is a partial matching of size at least δn. Let

S ⊆ V . Assume |R(S)| ≤ (1− δ)n. Then, either

1. There exists an i ∈ V \R(S) such that |R(S ∪ {i})| ≥ |R(S)|+ 0.01 · δ2 · n.

2. In the graph G′ = (V ′, E ′) with V ′ = V \ R(S) and E ′ = ⋃
i∈V ′Mi ∩ (V ′ × V ′)

all but at most 0.1δ · |V ′| of the matchings have at least 0.9δ · n edges.

Proof. Recall that the labels of edges incident to any vertex i are distinct, since the

graph is a union of partial matchings. Denote by A = R(S) and B = V \ R(S).

Assume for any i ∈ B there are at most 0.01δ2 · n edges to A labeled with labels in

B. (Otherwise, extend S by i and get |R(S∪{i})| ≥ |R(S)|+ 0.01δ2 ·n.) Then, there

are at most 0.01δ2 · n · |B| edges in the cut (A,B) with labels in B. By definition

of A = R(S), there are no edges between A and A labeled with B. Thus, at most

0.01δ2n · |B| edges are missing from the matchings labeled by B if we restrict to edges

between B and B. Hence, at most 0.1δ · |B| of the matchings may miss more than

0.1δ · n of their edges. �

We are now ready to prove Claim 7.3.5.

Proof of Claim 7.3.5. Initialize S := ∅. We repeat the following process. While

R(S) 6= V , check if there exists i ∈ V \R(S) such that |R(S∪{i})| ≥ |R(S)|+0.01δ2n.

We have two cases:

1. If such an i exists, update S := S ∪ {i}.

196

2. Else, let G′ = (V ′, E ′) where V ′ = V \ R(S) and E ′ = ⋃
i∈V ′Mi ∩ (V ′ × V ′).

Let M ′
i := Mi ∩ (V ′ × V ′). By Lemma 7.3.8, |V ′| ≥ δn. By Lemma 7.3.9,

all but at most 0.1δ|V ′| of the matchings M ′
i for i ∈ V ′ have at least 0.9δn

edges. Denote by δ′ = 0.9δn/|V ′| ≥ δ. We apply Lemma 7.3.6 on G′ to

get a subgraph G′′ = (V ′′, E ′′) defined by a subset V ′′ of size Ω(δ′|V ′|) and

E ′′ = ⋃
i∈V ′′Mi ∩ (V ′′ × V ′′) with minimal degree d = Ω((δ′)2 · |V ′|) ≥ Ω(δ2n).

We apply Lemma 7.3.7 on G′′ to get a set S ′′ ⊆ V ′′ of size O(log |V ′′|·(|V ′′|/d)) =

O(log n · (1/δ′)2) with |RG′′(S ′′)| ≥ Ω(d) ≥ Ω(δ2n). We update S := S ∪ S ′′.

The number of times we apply case 1 or case 2 is at most O(1/δ2), since each such

step introduces Ω(δ2n) new vertices to R(S). In each application of case 2, at most

O((1/δ′)2 · log n) ≤ O((1/δ2) · log n) elements are added to S. Overall, the size of S

at the end of the process will be

O
(

1
δ2

)
+O

(
1
δ2 · 1

δ2 · log n
)

= O
(

1
δ4 · log n

)
. �

197

Chapter 8

Applications to additive

combinatorics

8.1 Introduction

In this chapter we will show a few applications of the theory of locally decodable

codes to additive combinatorics. Specifically, we will show that techniques used to

prove LDC lower bounds can be used to improve bounds on well-studied problems in

additive combinatorics. Obtaining better LDC lower bounds, will very likely improve

the bounds for these problems and conversely improvements to these bounds could

lead to ideas that might be useful for improving LDC lower bounds. The structure

underlying these connections is a way to bound Gaussian width of special point sets

that arise as images of some special low-degree maps.

The Gaussian width of a point set T ⊆ Rk measures the expected maximum

correlation between T and a standard Gaussian vector g = N(0, Ik), and is given by

w(T) = E
[

sup
x∈T
〈x, g〉

]
.

198

The terminology reflects the fact that the Gaussian width of a set is proportional

to
√
k times its average width in a random direction. While this quantity plays

a central role in high-dimensional probability, it is notoriously hard to estimate in

general; see for instance [Tal14b] for an extensive discussion of this problem.

Our main result gives upper bounds on the Gaussian width of sets that appear

naturally in the context of probabilistic combinatorics. The relevant sets are given

by the image of the n-dimensional Boolean hypercube under a certain polynomial

mapping ψ : Rn → Rk. In particular, we focus on the case where each coordinate

ψi : Rn → R is a multilinear polynomial with 0-1 coefficients. Say that a polynomial

has multiplicity t if each of its variables has a nonzero exponent in at most t monomials

in its support.

Theorem 8.1.1. Let ψ : Rn → Rk be a polynomial mapping such that each coordinate

is multilinear, has 0-1 coefficients, and has degree at most d and multiplicity t. Then,

w
(
ψ({0, 1}n)

)
.d nt

√
kn1− 1

dd/2e log n.

The factor nt can be seen as a natural scaling due to the fact that each coor-

dinate ψi maps the Boolean hypercube into [0, nt] (which follows from a handshak-

ing lemma). In the special case where ψ is linear, ψ(x) = (〈c1, x〉, . . . , 〈ck, x〉), for

some c1, . . . , ck ∈ {0, 1}N , the set ψ({0, 1}n) is easily seen to be contained in the set

T = {(〈ci, y〉)ki=1 : ‖y‖`∞ ≤ 1}. The Gaussian width of the former set is thus at most

that of the latter, which in turn is at most

E
[∥∥∥∥ k∑

i=1
gici

∥∥∥∥
`1

]
. n
√
k,

as the sum is an n-dimensional Gaussian vector whose coordinates have variance

at most k. Perhaps surprisingly, Theorem 8.1.1 shows that if ψ is quadratic and

has constant multiplicity, then the Gaussian width is at most a factor
√

log n larger
199

than the above upper bound. This turns out to be an easy consequence of a 1974

random matrix inequality due to Tomczak–Jeagermann [TJ74], which also forms the

basis for our proof of the higher-degree cases. The proof of Theorem 8.1.1 (given

in Section 8.2) proceeds in two steps: first we reduce to the case of homogeneous

mappings of even degree, and then we reduce to the quadratic case. The first step

is the reason for the ceiling in dd/2e appearing in the exponent and it would be

interesting to know if one can remove this ceiling (i.e., does the result hold with the

exponent 1 − 2/d?). Finally, a close inspection of the proof of Theorem 8.1.1 shows

that it also holds for polynomials with non-negative integer coefficients, for a suitable

change of the definition of multiplicity. In the following four subsections we discuss

two applications of this result and links with error correcting codes and the Banach

space notion of type.

8.1.1 Random differences in Szemerédi’s Theorem

In 1975 Szemerédi [Sze75] proved that any subset of the integers of positive upper

density contains arbitrarily long arithmetic progressions, answering a famous open

question of Erdős and Turán. It is well known that this is equivalent to the assertion

that for every positive integer k and any α ∈ (0, 1), there exists an N0(k, α) ∈ N such

that if N ≥ N0(k, α) and A ⊆ Z/NZ is a set of size |A| ≥ αN , then A must contain

a proper k-term arithmetic progression. Certain refinements of Szemerédi’s theorem

concern sets D ⊆ N for which the theorem still holds true when the arithmetic

progressions are required to have common difference from D. Such sets are usually

referred to as intersective sets in number theory, or recurrent sets in ergodic theory.

More precisely, a set D ⊆ N is `-intersective (or `-recurrent) if any set A ⊆ N

of positive upper density has an (` + 1)-term arithmetic progression with common

difference in D. Szemerédi’s theorem then states that N is `-intersective for every

` ∈ N, but much smaller intersective sets exist. For example, for any t ∈ N, the

200

set {1t, 2t, 3t, . . . } is `-intersective for every `, which is a special case of more general

results of Sárközy [Sár78a] when ` = 1 and of Bergelson and Leibman [BL96] for all

` ≥ 1. The shifted primes {p − 1 : p is prime} and {p + 1 : p is prime} are also

`-intersective for every ` ∈ N, shown by Sárközy [Sár78b] when ` = 1 and in a more

general setting by Wooley and Ziegler [WZ12] for all ` ≥ 1.

It is natural to ask at what density, random sets become `-intersective. To simplify

the discussion, we will look at the analogous question in Z/NZ.

Definition 8.1.2. Let ` be a positive integer and α ∈ (0, 1]. A subset D ⊆ Z/NZ

is (`, α)-intersective if any subset A ⊆ Z/NZ of size |A| ≥ αN contains a proper

(`+ 1)-term arithmetic progression with common difference in D.

It was proved independently by Frantzikinakis et al. [FLW12] and Christ [Chr11]

that for β` = 1
2`−1 and p ≥ ω(N−β` logN), the random set [Z/NZ]p is (`, α)-

intersective with probability 1 − o(1), provided N ≥ N1(`, α). This was improved

for all ` ≥ 2 in [FLW16b], where it was shown that the same result holds with

β` = 1
`+1 , though it was conjectured there that β` = 1 suffices for all ` ≥ 1. Based on

Theorem 8.1.1 we obtain the following result, which improves on the latter bounds.

Theorem 8.1.3. For every ` ∈ N and α ∈ (0, 1), there exists an N1(`, α) ∈ N such

that the following holds. Let N ≥ N1(`, α) be an integer and let

β` = 1
d `+1

2 e
and p ≥ ω(N−β` logN).

Then, with probability 1− o(1), the set [Z/NZ]p is (`, α)-intersective.

8.1.2 Large deviations for arithmetic progressions

Let H = (V,E) be a hypergraph over a finite vertex set V of cardinality N and

for p ∈ (0, 1) denote by Vp the random binomial subset where each element of V

201

appears independently of all others with probability p. Let X be the number of edges

in H that are induced by Vp. Important instances of the random variable X include

the count of triangles in an Erdős–Rényi random graph and the count of arithmetic

progressions of a given length in the random set [Z/NZ]p.

The study of the asymptotic behavior of X when p = p(N) is allowed to depend

on N and N grows to infinity motivates a large body of research in probabilistic

combinatorics. Of particular interest is the problem of determining the probability

that X significantly exceeds its expectation Pr[X ≥ (1 + δ)EX] for δ > 0, referred

to as the upper tail. Despite the fact that standard probabilistic methods fail to

give satisfactory bounds on the upper tail in general, advances were made recently

for special instances, in particular for triangle counts [LZ17] and general subgraph

counts [BGLZ17]. For more general hypergraphs, progress was made by Chatterjee

and Dembo [CD16] using a novel nonlinear large deviation principle (LDP), which

was improved by Eldan [Eld16] shortly after. The LDPs give precise estimates on the

upper tail that are given in terms of a parameter φp whose value is determined by the

solution to a certain variational problem. The range of values of p for which these

estimates are actually valid depends on the underlying hypergraph H. This splits

the problem of estimating the upper tail into two sub-problems: (1) determining for

what range of p the estimate in terms of φp holds true and (2) solving the variational

problem to determine the value of φp. The answer to problem (1) turns out to depend

on the Gaussian width of a point set related to H.

This approach was pursued in [CD16] to estimate the upper tail of the number

of 3-term arithmetic progressions in [Z/NZ]p, for which the authors solved problem

(1). The case of longer APs, asking for the upper tail probability of the count Xk of

k-term arithmetic progressions in [Z/NZ]p, was recently treated by Bhattacharya et

al. [BGSZ18]. They solved the variational problem (2) for N prime and gave bounds

for the relevant Gaussian width towards solving problem (1). Based on this, they

202

showed that if k ≥ 3 and δ > 0 are fixed and p tends to zero sufficiently slowly as

N →∞ along the primes, then

Pr[Xk ≥ (1 + δ)EXk] = p(1+o(1))
√
δpk/2N . (8.1)

Similar results were shown for the analogous problem over {1, . . . , N} (in which

case N no longer needs to be prime), but we shall focus on the problem in Z/NZ for

ease of exposition. The rate at which p is allowed to decay for (8.1) to hold turns out

to depend on Gaussian widths of the form featuring in Theorem 8.1.1. The bounds

proved in [BGSZ18] imply that (8.1) holds provided p ≥ N−ck(logN)εk for

c3 = 1
18 , c4 = 1

48 and ck = 1
6k(k − 1) for k ≥ 5,

and absolute constants εk ∈ (0,∞) depending only on k. However, the authors

conjecture that a probability p slightly larger than N−1/(k−1) suffices for all k. Some

support for this conjecture is given by a result of Warnke [War16] showing that for

all p ≥ (logN/N)1/(k−1), the logarithm of the upper tail (also referred to as the large

deviation rate) of the k-AP count in {1, . . . , N}p is given by Θk(
√
δpk/2N log p), where

the asymptotic notation hides constants depending only on k. Notice that (8.1) is

more accurate than this result in that it (almost) determines those constants, though

currently for a more narrow range of p.1 Using Theorem 8.1.1, we widen the range

of p for which (8.1) can be shown to hold for all k ≥ 5.

Theorem 8.1.4. For every integer k ≥ 3 and

ck = 1
6k
⌈
k−1

2

⌉ ,
1The main motivation for finding such precise estimates of the upper tail probability is not so

much the problem itself as it is to understand structure of the set [Z/NZ]p conditioned on Xk being
much larger than its expectation (see [BGSZ18]).

203

the estimate (8.1) holds true, provided p ≥ N−ck(logN) and N is prime.

8.1.3 Relation to LDCs

There is a close connection between the Gaussian widths considered in Theorem 8.1.1

and LDCs. In Chapter 5, we showed that q-query LDCs from {0, 1}Ω(k) to {0, 1}O(n)

are equivalent to mappings ψ : Rn → Rk whose coordinates are degree-q, multiplicity-

1 polynomials with 0-1 coefficients that are supported by Ω(n) monomials, and such

that the set ψ({0, 1}n) has Gaussian width Ω(k). Because of this connection, the

best-known lower bounds on the length n = n(k) of q-query LDCs—proved using

techniques from quantum information theory [KW04]—imply a slightly different but

equivalent version of Theorem 8.1.3 (see Section 8.5). The proof of Theorem 8.1.1

is based on ideas from [KW04], but does not use quantum information theory. Not

surprisingly, the LDC lower bounds of [KW04] are also implied by Theorem 8.1.1.

8.1.4 Gaussian width bounds from type constants

We observe that the Gaussian width in Theorem 8.1.1 can be bounded in terms of

type constants of certain Banach spaces. Unfortunately, we do not have good enough

bounds on the type constants of the required spaces to improve Theorem 8.1.1. But

we hope that this connection will motivate progress on understanding these spaces.

A Banach space X is said to have (Rademacher) type p > 0 if there exists a

constant T <∞ such that for every k and x1, . . . , xk ∈ X,

Eε
∥∥∥∥∥
k∑
i=1

εixi

∥∥∥∥∥
p

X

≤ T p
k∑
i=1
‖xi‖pX , (8.2)

where the expectation is over a uniformly random ε = (ε1, . . . , εk) ∈ {−1, 1}k. The

smallest T for which (8.2) holds is referred to as the type-p constant of X, de-

noted Tp(X). Type, and its dual notion cotype, play an important role in Banach

204

space theory as they are tightly linked to local geometric properties (we refer to [LT79]

and [Mau03] for extensive surveys). Some fundamental facts are as follows. It fol-

lows from the triangle inequality that every Banach space has type 1 and from the

Khintchine inequality that no Banach space has type p > 2. The parallelogram law

implies that Hilbert spaces have type 2. An easy but important fact is that `1 fails

to have type p > 1. Indeed, a famous result of Maurey and Pisier [MP73] asserts

that a Banach space fails to have type p > 1 if and only if it contains `1 uniformly.

Finite-dimensional Banach spaces have type-p for all p ∈ [1, 2].

Of importance to Theorem 8.1.1 are the actual type constants Tp(X) of a certain

family of finite-dimensional Banach spaces. Let r1, . . . , rd ≥ 1 be such that∑d
i=1

1
ri

= 1

and let Lnr1,...,rd
be the space of d-linear forms on Rn × · · · × Rn (d times) endowed

with the norm

‖Λ‖ = sup
{ |Λ(x1, . . . , xd)|
‖x1‖`r1

· · · ‖xd‖`rd
: x1, . . . , xd ∈ Rn \ {0}

}
.

This space is also known as the injective tensor product of `ns1 , . . . , `
n
sd

for r−1
i +s−1

i = 1

and as such plays an important role in the theory of tensor products of Banach

spaces [Rya02]. The relevance of the type constants of this space to Theorem 8.1.1 is

captured by the following lemma, proved in Section 8.7.

Lemma 8.1.5. Let ψ : Rn → Rk be a polynomial mapping such that each coordinate

is multilinear and has 0-1 coefficients, degree at most d and multiplicity t. Then for

any r1, . . . , rd ≥ 1 such that ∑d
i=1

1
ri

= 1 and any p ∈ [1, 2],

w
(
ψ({0, 1}n)

)
.d nt Tp(Lnr1,...,rd

) k1/p.

Observe that the space Ln2,2 may be identified with the space of n × n matrices

endowed with the spectral norm (or operator norm). A key ingredient in the proof of

Theorem 8.1.1, Theorem 8.2.1 below, easily implies that the type-2 constant of this
205

space is of order O(
√

log n). A well-known lower bound of the same order follows

for instance from the connection between Gaussian width and LDCs and a basic

construction of a 2-query LDC known as the Hadamard code. More generally, lower

bounds on the type constants of Lnr1,...,rd
are implied by d-query LDCs [BNR12, Bri16].

8.2 Proof of Theorem 8.1.1

In this section we prove Theorem 8.1.1. We begin by giving a high-level overview of

the ideas. The main tool we use is the following random matrix inequality, which

is a special case of a non-commutative version of the Khintchine inequality due to

Tomczak-Jaegermann [TJ74, Theorem 3.1]. Let 〈·, ·〉 be the standard inner product

on RN and denote by BN
2 the Euclidean unit ball in RN . Given a matrix A ∈ RN×N ,

its operator norm (or spectral norm) is given by ‖A‖ = sup{|〈Ax, y〉| : x, y ∈ BN
2 }.

Theorem 8.2.1 (Tomczak-Jaegermann). There exists an absolute constant C ∈

(0,∞) such that the following holds. Let A1, . . . , Ak ∈ RN×N be a collection of matri-

ces and let g1, . . . , gk be independent Gaussian random variables with mean zero and

variance 1. Then,

E
[∥∥∥∥ k∑

i=1
giAi

∥∥∥∥] ≤ C
√

logN
(k∑
i=1
‖Ai‖2

)1/2
.

This result already suffices to prove Theorem 8.1.1 when the coordinate map-

pings ψi are quadratic forms, in which case there exist matrices Ai ∈ {0, 1}n×n such

that ψi(x) = 〈Aix, x〉. The assumption that each ψi has multiplicity t implies that

each row and column of Ai has at most t ones. This in turn implies that ‖Ai‖ ≤ t

by a BirkhoffâĂŞ-von Neumann-type theorem. Since each x ∈ {0, 1}n has Euclidean

206

norm at most
√
n, we get

w
(
ψ({0, 1}n)

)
= E

[
max

x∈{0,1}n

k∑
i=1

gi〈Aix, x〉
]

= E
[

max
x∈{0,1}n

〈(k∑
i=1

giAi

)
x, x

〉]
≤ nE

[∥∥∥∥ k∑
i=1

giAi

∥∥∥∥].
By Theorem 8.2.1, the above is at most Ctn

√
k log n.

The general case is proved via a reduction to the above quadratic case and consists

of two steps. In the first step, we reduce to the case where each coordinate ψi is a

homogeneous polynomial of degree 2dd/2e. This is done in a straightforward way by

adding at most dn variables in such a way so as to preserve the multiplicity. The

second step consists of a reduction to the quadratic case. For this, it will be convenient

to consider the hypergraphs associated with the monomial support of the coordinate

mappings ψi.

Recall that an d-hypergraph H = (V,E) consists of a vertex set V and a mul-

tiset E, also denoted E(H), of subsets of V of size at most d, called the edges. A

hypergraph is d-uniform if each edge has size exactly d. The degree of a vertex is

the number of edges containing it and the degree of H, denoted ∆(H), is the max-

imum degree among its vertices. A matching is a hypergraph where no two edges

intersect. Associate with a hypergraph H = ([n], E), the multilinear polynomial

pH ∈ R[x1, . . . , xn] given by

pH(x1, . . . , xn) =
∑
e∈E

∏
i∈e
xi. (8.3)

The multiplicity of pH is then exactly the degree ∆(H). Clearly the coordinate

mappings ψi of the form featuring in Theorem 8.1.1 can be written as pH for some

d-hypergraph H of degree at most t. The reduction to the quadratic case is based on

207

the following key lemma, in which for x ∈ Rn and m ∈ N, the the mth tensor power x

is defined as x⊗m = (∏m
i=1 xui)u∈[n]m .

Lemma 8.2.2 (Matrix lemma). For every r ∈ N there exist a Cr, cr ∈ (0,∞) and

n0(r) ∈ N such that the following holds. Let n ≥ n0(r), m = Crn
1−1/r and N = nm.

Let H = ([n], E) be a 2r-uniform hypergraph and let pH be the polynomial as in (8.3).

Then, there exists a matrix A ∈ RN×N such that ‖A‖ .r ∆(H) and for every x ∈

{−1, 1}n,

pH(x) = n

crN
〈Ax⊗m, x⊗m〉.

Moreover, A is the adjacency matrix of a graph (with possible parallel edges).

With this lemma in hand, the proof of Theorem 8.1.1 is straightforward (see be-

low). The idea behind Lemma 8.2.2 is to use decompositions into matchings and a

generalization of the Birthday Paradox that says that for any n-vertex 2r-matching,

a random subset of Crn1−1/r vertices contains r vertices of any fixed edge with proba-

bility cr/n. To illustrate how this is used in the r = 2 case, let H be a 4-matching, let

m = C2
√
n and N = nm. It follows from the generalized Birthday Paradox that there

are c2N/n strings in [n]m containing at least two elements of a given edge. Now let G

be the graph with vertex set [n]m whose edges are the pairs {u, v} that cover some

edge in H and complement each other, meaning: there are indices i, j ∈ [m] such that

{ui, uj, vi, vj} ∈ E(H) and u` = v` for all ` 6∈ {i, j}. The main observation is that for

every edge {u, v} ∈ E(G) that covers an edge e ∈ E(H) and every x ∈ {−1, 1}n, we

have

(x⊗m)u(x⊗m)v =
m∏
`=1

xu`xv` = xuixujxvixvj =
∏
w∈e

xw.

It follows that, modulo the relations x2
1 = 1, . . . , x2

n = 1, we have pG(x⊗m) =

(c2N/n)pH(x). The lemma would now follow by letting A be the appropriately scaled

adjacency matrix of G, were it not for the issue that G could have very high degree,

which would result in A having a large operator norm. To deal with this, we instead
208

consider a pruned version of G in which we keep only edges that do not cover too

many edges of H.

We now give the formal proof of Theorem 8.1.1. The following simple proposi-

tion is used for the first step, in which we homogenize the polynomials. Given two

hypergraphs H,H ′, say that H ′ majorizes H if V (H) ⊆ V (H ′) and if for each edge

e ∈ E(H), there is a unique edge e′ ∈ E(H ′) such that e ⊆ e′.

Proposition 8.2.3. For any n-vertex d-hypergraph H, there is a d-uniform hyper-

graph H ′ on dn vertices that majorizes H and satisfies ∆(H ′) = ∆(H).

Proof. Let t = ∆(H). It follows from the handshaking lemma that |E(H)| ≤ tn.

Partition E(H) = {E1, . . . , En} into n pairwise disjoint sets of size at most t each.

Add to V (H) pairwise disjoint sets W1, . . . ,Wn of d− 1 new vertices each. For each

i ∈ [n], complete each edge e ∈ Ei to a set of size d by adding vertices from Wi and

let H ′ be the hypergraph thus obtained. Observe that we have not increased the

degree of the vertices in V (H). Since each Ei has size at most t, the new vertices

in Wi also have degree at most t and therefore, ∆(H ′) = t. It is trivial to verify

that H ′ satisfies the other desired properties. �

of Theorem 8.1.1. Let r = dd/2e and for each i ∈ [k], let Hi be the d-hypergraph

of degree t such that ψi = pHi , with pHi as in (8.3). Assume that n ≥ n0(r) for

n0(r) as in Lemma 8.2.2. We start by reducing to the setting where each Hi is 2r-

uniform and of degree at most t. To this end, let H ′i = ([n] ∪ [(2r − 1)n], E ′i) be a

2r-uniform hypergraph that majorizes Hi as in Proposition 8.2.3, which exists since

any d-hypergraph is a 2r-hypergraph. Then, for each e ∈ E(Hi), there is a unique

set f(e) ⊆ [(2r − 1)n] such that e ∪ f(e) ∈ E(H ′i). It follows that

pHi(x) =
∑

e∈E(Hi)

∏
i∈e
xi =

∑
e∈E(Hi)

∏
i∈e
xi

∏
j∈f(e)

1 = pH′i((x,1)),

209

where 1 ∈ R(2r−1)n is the all-ones vector. Hence, if we let ψ′ : R2rn → Rk be the

polynomial map whose coefficients are given by pH′i , then

w
(
ψ({0, 1}n)

)
≤ w

(
ψ′({0, 1}2rn)

)
.

Since the dependence of our claimed bound on the Gaussian width is polynomial in n,

the extra vertices will result in an extra factor depending only on d. It thus suffices

to prove the theorem for the case where H1, . . . , Hk are 2r-uniform.

Observe that since the polynomials ψi are multilinear, the Gaussian width is

bounded from above by replacing binary vectors with sign vectors. In particular,

w
(
ψ({0, 1}n)

)
≤ Emax

{ k∑
i=1

gipHi(x) : x ∈ {−1, 1}n
}
.

Let m = Crn
1−1/r and N = nm and for each i ∈ [k], let Ai ∈ RN×N be a matrix for

pHi as in Lemma 8.2.2. Then, for every x ∈ {−1, 1}n,

k∑
i=1

gipHi(x) = n

crN

n∑
i=1

gi〈Aix⊗m, x⊗m〉 ≤
n

cr

∥∥∥∥ k∑
i=1

giAi

∥∥∥∥,
where in the inequality we used that x⊗m has Euclidean norm

√
N . Taking expecta-

tions, it then follows from Theorem 8.2.1 that the Gaussian width of ψ({0, 1}n) is at

most

n

cr
E
[∥∥∥∥ k∑

i=1
giAi

∥∥∥∥] . n

cr

√
logN

(k∑
i=1
‖Ai‖2

)1/2
.r nt

√
kn1−1/r log n,

where in the second inequality we used that ‖Ai‖ ≤ Or(t) for each i ∈ [k]. �

210

8.3 Proof of the matrix lemma

In this section we prove Lemma 8.2.2. The starting point is a decomposition of

a bounded-degree hypergraph into a small number of matchings. For this, we use

the following basic result on edge colorings. The edge chromatic number of a hy-

pergraph H, denoted by χE(H), is the minimum number of colors needed to color

the edges of H such that no two edges which intersect have the same color. Note

that χE(H) equals the smallest number of matchings into which E(H) can be parti-

tioned.

Lemma 8.3.1. Let H be a d-hypergraph. Then,

∆(H) ≤ χE(H) ≤ d(∆(H)− 1) + 1.

Proof. Clearly χE(H) ≥ ∆(H) since edges containing a maximum degree vertex

should get different colors. To prove the upper bound, form a graph G whose vertices

are E(H), and add edges between intersecting hypergraph edges. Then χE(H) is

equal to the vertex chromatic number of the graph G, which, by Brooks’ Theorem,

is at most ∆(G) + 1. Since an edge in H can intersect at most d(∆(H) − 1) other

edges, ∆(G) ≤ d(∆(H)− 1). �

To deal with matchings, we introduce the following definitions. LetM⊆
(

[n]
2r

)
be

a maximal 2r-matching of [n]. Let s = 200 · 4r. Given a string x ∈ {−1, 1}n write its

m-fold tensor product as

x⊗m =
(m∏
i=1

xf(i)

)
f :[m]→[n]

.

211

Given a mapping f : [m]→ [n] and set S ∈M, let

µS(f) =
∑

T∈(Sr)

∏
i∈T
|f−1(i)|.

Note that this is a count of the r-subsets I ⊆ [m] such that |S ∩ f(I)| = r. Denote

φ(f) =
∑
S∈M

µS(f).

For ` ∈ N, say that f is `-good if 1 ≤ φ(f) ≤ `. Say that g : [m]→ [n] complements f

if it satisfies the following two criteria:

1. There exists exactly one I ∈
(

[m]
r

)
such that f(I) ∪ g(I) ∈M.

2. For all i ∈ [m] r I, we have g(i) = f(i).

If g complements f then clearly the converse also holds. Say that the complementary

pair (f, g) covers S ∈M if f(I) ∪ g(I) = S. Observe that if (f, g) covers S, then for

every x ∈ {−1, 1}m, we have

(x⊗m)f (x⊗m)g =
m∏
i=1

xf(i)xg(i) =
∏
j∈S

xj. (8.4)

Define the set of ordered pairs

P =
{

(f, g) : f is s-good and g complements f
}
. (8.5)

Proposition 8.3.2. Let P be as in (8.5). Then, for every S ∈ M, the number of

pairs (f, g) ∈ P that cover S equals |P|/|M|.

Proof. Fix distinct sets S, T ∈M and let π ∈ Sn be a permutation such that π(S) =

T, π(T) = S and π(i) = i for all i /∈ S∪T . Let PS be the set of pairs (f, g) ∈ P which

cover S and define PT similarly. We claim that the map ψ : (f, g) 7→ (π ◦ f, π ◦ g)
212

is an injective map from PS to PT . It follows that T is covered by at least as many

pairs from P as S is. Similarly, interchanging S and T , the converse also holds. To

prove the claim, note that if (f, g) covers S, then (π ◦ f, π ◦ g) covers T . Moreover,

φ(π ◦ f) = φ(f) because π maps edges of the matching M to edges of M. Thus

ψ(PS) ⊂ PT . Finally ψ is injective because if π ◦ f = π ◦ f ′ for some f, f ′ : [m]→ [n],

then f = f ′. Hence P covers all S ∈M equally. �

Proposition 8.3.3. For every (f, g) ∈ P, we have that g is s2-good.

Proof. Let S ∈ M and (f, g) ∈ P be such that (f, g) covers S. Consider the his-

tograms F,G : [n] → {0, 1, . . . ,m} given by F (i) = |f−1(i)| and G(i) = |g−1(i)| for

each i ∈ [n]. Then F and G differ only in S. In particular, there is an r-set T ⊆ S

such that G(i) = F (i) + 1 for each i ∈ T and G(i) = F (i) − 1 for each i ∈ S r T .

Hence,

µS(g) =
∑

T∈(Sr)

∏
i∈T

G(i)

≤
∑

T∈(Sr)

∏
i∈T

(
F (i) + 1

)

≤
∑

T∈(Sr)

(
1 + 2r

∏
i∈T

F (i)
)

≤ 4r + 2rµS(f).

For all other S ′ ∈M, we have µS′(g) = µS′(f). Moreover, f must be s-good for (f, g)

to belong to P . It follows that

φ(g) =
∑
S′∈M

µS′(g) ≤ 4r + 2r
∑
S′∈M

µS′(f) = 4r + 2rφ(f) ≤ s2,

where in the last line we used the choice of s = 200 · 4r. �

213

Lemma 8.3.4 (Generalized birthday paradox). For every r ∈ N there exists a Cr ∈

(0,∞) and an n0(r) ∈ N such that the following holds. Let h be a uniformly distributed

random variable over the set of maps from [m] to [n]. Then, provided n ≥ n0(r) and

m = Crn
1−1/r,

Pr
[
h is s-good

]
≥ 1

2 .

We postpone the proof of Lemma 8.3.4 to Section 8.4.

Corollary 8.3.5. Let P be as in (8.5) and let A : [n]m×[n]m → {0, 1} be its incidence

matrix, that is A(f, g) = 1 ⇐⇒ (f, g) ∈ P. Then, |P| ≥ Ω(N) and every row and

every column of A has at most s2(r!) ones.

Proof. The first claim follows from Lemma 8.3.4 and the fact that |P| is at least the

number of s-good mappings. If h is l-good, then there are at most l(r!) mappings

from [m] → [n] that complement h. Hence, every row of A has at most s(r!) ones

and by Proposition 8.3.3, every column of A has at most s2(r!) ones. �

With this, we can now prove Lemma 8.2.2.

of Lemma 8.2.2. Let t = ∆(H). By Lemma 8.3.1, H can be decomposed into

χE(H) ≤ 2rt matchings, which we denote by F1, . . . ,FχE(H). Complete each Fi

to a maximal family Mi of disjoint 2r-subsets of [n] in some arbitrary way. For

each Mi, let Pi be as in (8.5) and let Ai : [n]m × [n]m → {0, 1}n be its incidence

matrix. Set to zero all the entries of Ai that correspond to a pair (f, g) covering a

set in Mi rFi. Let B = A1 + · · ·+AχE(H) and A = (B +BT). It follows from (8.4)

and Proposition 8.3.2 that for each x ∈ {−1, 1}n, we have

〈 χE(H)∑
i=1

(Ai + AT
i)x⊗m, x⊗m

〉
= 2

χE(H)∑
i=1

|Pi|
|Mi|

∑
S∈Fi

∏
j∈S

xi. (8.6)

Since all Mi are maximal, they have the same size, as do the Pi. Hence, by Corol-

lary 8.3.5, there exists a constant cr ∈ (0, 1] such that the right-hand side of (8.6)
214

equals (2crN/n)pH(x). Let G be the graph with adjacency matrix A, allowing for

parallel edges. Then G has degree at most 2ts2(r!). It follows from Lemma 8.3.1

that G can be partitioned into Or(t) matchings. Since the adjacency matrix of a

matching has unit norm, we get that ‖A‖ ≤ Or(t). �

8.4 Proof of the generalized birthday paradox.

For the proof of Lemma 8.3.4, we use a standard Poisson approximation result for

“balls and bins” problems [MU05, Theorem 5.10]. A discrete Poisson random vari-

able Y with expectation µ is nonnegative, integer valued, and has probability density

function

Pr[Y = `] = e−µµ`

`! , ∀` = 0, 1, 2, . . . (8.7)

Proposition 8.4.1. If X, Y are independent Poisson random variables with expecta-

tions µX , µY , respectively, then X + Y is a Poisson random variable with expectation

µX + µY .

Lemma 8.4.2. Let h be a uniformly distributed map from [m] to [n]. For each i ∈ [n],

let Xi = |h−1(i)| and let X = (Xi)i∈[n]. Let Y = (Yi)i∈[n] be a vector of independent

Poisson random variables with expectation m/n. Then, for any nonnegative function

Φ : (N∪{0})n → R+ such that E[Φ(X)] decreases or increases monotonically with m,

we have

E[Φ(X)] ≤ 2E[Φ(Y)].

of Lemma 8.3.4. Let Cr > 0 be a parameter depending only on r to be set later.

Let µ = Crm/n = Crn
−1/r and assume that n ≥ n0(r) := 4(Crr)r. For h a random

map as in Lemma 8.4.2, we begin by lower bounding the probability of the event that

φ(h) ≥ 1. Recall that this occurs if there exists an S ∈ M and an r-subset T ∈
(
S
r

)
such that T ⊆ im(h). Let X be as in Lemma 8.4.2. Let ψ : (N ∪ {0})n → {0, 1} be

215

the function

ψ(x) =
∏
S∈M

∏
T∈(Sr)

(
1−

∏
i∈T

1≥1(xi)
)
.

Then ψ(X) = 1 if φ(h) = 0 and ψ(X) decreases monotonically with m. Hence, for Y

a Poisson random vector as in Lemma 8.4.2, we have

Pr[φ(h) = 0] = E[ψ(X)]

≤ 2E[ψ(Y)]

= 2
∏
S∈M

E
[∏
T∈(Sr)

(
1−

∏
i∈T

1≥1(Yi)
)]
, (8.8)

where in the last line we used the fact that since the sets S ∈ M are disjoint, the

random variables ∏
T∈(Sr)

(
1−

∏
i∈T

1≥1(Yi)
)

are independent. The random variables 1≥1(Yi), i ∈ S, are independent Bernoullis

that are zero with probability e−µ. The expectation in (8.8) equals the probability

that these random variables form a string of Hamming weight strictly less than r.

Using that n ≥ 4(Crr)r and the fact that 1 − x ≤ exp(−x) ≤ 1 − x + x2/2 when

x > 0, this probability is at most

1−Pr[∀i ∈ T 1≥1(Yi) = 1] = 1−(1−e−µ)r ≤ 1−(µ(1−µ/2))r ≤ 1−C
r
r

en
≤ exp

(
−C

r
r

en

)

where T ⊂ S is some fixed subset of size r. Hence, since M is maximal, the above

and (8.8) give

Pr[φ(h) = 0] ≤ 2 exp
(
−C

r
r |M|
en

)
≤ 2 exp

(
−C

r
rbn/rc
en

)
≤ 2 exp

(
− C

r
r

2er

)
. (8.9)

216

Set Cr = (6er)1/r, then the above right-hand side is at most 1/4. Next, we upper

bound the probability that φ(h) ≥ s = 200 · 4r. Define χ : (N ∪ {0})n → R+ by

χ(x) =
∑
S∈M

∑
T∈(Sr)

∏
i∈T

xi.

Then, φ(h) = χ(X). Moreover, E[χ(X)] increases monotonically with m. It thus

follows from Lemma 8.4.2 that

E[φ(h)] ≤ 2E[χ(Y)] = 2
∑
S∈M

∑
T∈(Sr)

∏
i∈T

E[Yi]

≤ 2|M|
(

2r
r

)(
m

n

)r
≤ 2 · n

r
· 4r · (6er)n−1 ≤ 50 · 4r.

where in the second line we used the fact that the Yi are independent. By Markov’s

inequality, Pr[φ(h) > 200·4r] ≤ 1
4 . With (8.9), we get that h is s-good with probability

at least 1/2. �

8.5 Random differences in Szemerédi’s Theorem

In this section we prove Theorem 8.1.3. We first consider a slightly different ran-

dom model where we form a random multiset Dk of size k by repeatedly sampling a

uniformly random element from Z/NZ. We will need the following equivalent formu-

lation of Szemerédi’s Theorem due to Varnavides [Var59] (see [Tao07, Theorem 4.8]

for this exact formulation).

Proposition 8.5.1. For every ` ∈ N, α ∈ (0, 1] there exists N1(`, α), ε(`, α) such that

for every N ≥ N1(`, α), the following holds. Every subset A ⊆ Z/NZ of size at least

αN contains an ε(`, α)-fraction of all ` + 1 term arithmetic progressions in Z/NZ,

that is,

Ex∈Z/NZ,y∈Z/NZr{0}[1A(x)1A(x+ y) . . . 1A(x+ `y)] ≥ ε(`, α).

217

Proposition 8.5.2. For all ` ∈ N, α ∈ (0, 1] there exists N1(`, α) ∈ N such that

for every N > N1(`, α) the following holds. Let k ≥ ω(N1−1/d(`+1)/2e logN) and let

D be a random multiset of size k obtained by sampling k times independently and

uniformly at random from Z/NZ \ {0}. Then, with probability 1− o(1), every subset

A ⊆ Z/NZ of size at least αN contains a proper arithmetic progression of length

`+ 1 with common difference in D.

Proof. We will arrive at a contradiction assuming that the statement is false. Let

Γ = Z/NZ. For f : Γ→ R and y ∈ Γ \ {0}, define

φy(f) = Ex∈Γ[f(x)f(x+ y) . . . f(x+ `y)],

which is a degree ` + 1 polynomial over the variables (f(x))x∈Γ. For a multiset

S ⊆ Γ \ {0}, define

ΛS(f) = 1
|S|

∑
y∈S

φy(f).

If f = 1A, then this counts the fraction of proper (` + 1)-term APs with common

difference in S that lie completely in A. Note that ED[ΛD(f)] = ΛΓ\{0}(f).

Let N1(`, α) and ε(`, α) be as in Proposition 8.5.1. Suppose that with a constant

probability, there is a subset A ⊆ Γ of size at least αN with no proper (` + 1)-term

APs whose common difference lies in D. Then,

Pr
D

[
inf

A:|A|≥αN
ΛD(1A) = 0

]
= Ω(1).

By Proposition 8.5.1, for every A ⊆ Γ of size at least αN , we have that ΛΓ\{0}(1A) ≥ ε.

We are going to apply a standard symmetrization trick to establish a connection with

218

Gaussian width. Let D′ be an independent copy of D. Then,

ε . ED
[

sup
A:|A|≥αN

∣∣∣ΛD(1A)− ΛΓ\{0}(1A)
∣∣∣]

= ED
[

sup
A:|A|≥αN

∣∣∣ΛD(1A)− ED′ [ΛD′(1A)]
∣∣∣]

≤ ED,D′
[

sup
A:|A|≥αN

∣∣∣ΛD(1A)− ΛD′(1A)
∣∣∣]

= Ey1,...,yk,y
′
1,...,y

′
k
∈Γ\{0}

[
sup

A:|A|≥αN

∣∣∣∣1k
k∑
i=1

φyi(1A)− φy′i(1A)
∣∣∣∣]

Observe that for i.i.d. random y, y′ ∈ Γ\{0}, the random variable φy(1A)−φy′(1A) is

symmetric in the sense that it has the same distribution as its negation. Let σ1, . . . , σk

be independent uniformly distributed {−1, 1}-valued random variables. Then it fol-

lows from the above that

ε . Ey1,...,yk y′1,...,y
′
k
∈Γ\{0}Eσ

[
sup

A:|A|≥αN

∣∣∣∣1k
k∑
i=1

σi
(
φyi(1A)− φy′i(1A)

) ∣∣∣∣]

≤ 2Ey1,...,yk∈Γ\{0}Eσ
[

sup
A:|A|≥αN

∣∣∣∣1k
k∑
i=1

σiφyi(1A)
∣∣∣∣].

Let us fix y1, . . . , yk ∈ Γ \ {0}. Each φyi can be written as φyi = N−1pHi (as in

(8.3)) where Hi is the hypergraph on Γ whose edges are given by (`+ 1) term arith-

metic progressions with common difference yi. The maximum degree of Hi is O(`).

This is because each such AP (x+ tyi)0≤t≤` intersects another AP (x′ + t′yi)0≤t′≤` iff

x − x′ = (t′ − t)yi; so there are only O(`) such x′ for a given x. Let g1, . . . , gk be

219

independent N(0, 1) random variables. Then we can bound

Eσ
[

sup
A:|A|≥αN

∣∣∣∣1k
k∑
i=1

σiφyi(1A)
∣∣∣∣] . 1

k
Eg
[

sup
A

∣∣∣∣ k∑
i=1

giφyi(1A)
∣∣∣∣]

= 1
Nk

Eg
[

sup
A

∣∣∣∣ k∑
i=1

gipHi(1A)
∣∣∣∣]

.`
1
k

√
kN1−1/d(`+1)/2e logN,

where the last line follows directly from Theorem 8.1.1. Thus we get k .`

N1−1/d(`+1)/2e logN which is a contradiction. �

We will the need following simple fact that conditioning on a high probability

event will not change the probability of any event by much.

Lemma 8.5.3. Let A,E be some events in some probability space. If Pr[E] ≥ 1− ε

then |Pr[A|E]− Pr[A]| ≤ 2ε/(1− ε).

Proof.

|Pr[A|E]− Pr[A]| =
∣∣∣∣∣Pr[A ∩ E]

Pr[E] − Pr[A]
∣∣∣∣∣

=
∣∣∣∣∣ 1
Pr[E] (Pr[A] + Pr[E]− Pr[A ∪ E])− Pr[A]

∣∣∣∣∣
≤
∣∣∣∣∣Pr[A]

(
1

Pr[E] − 1
)∣∣∣∣∣+

∣∣∣∣∣1− Pr[A ∪ E]
Pr[E]

∣∣∣∣∣ ≤ 2ε
1− ε.

�

of Theorem 8.1.3. Let Dk be a random subset of Z/NZ r {0} of size at most k,

formed by sampling a uniformly random element from Z/NZ for k times. Let Dp =

[Z/NZ\{0}]p be a random subset of Z/NZ\{0} formed by including each element with

probability p independently. We claim that if Dk is `-intersective with probability

1− o(1), then Dp will also be `-intersective with probability 1− o(1) when p = 2k/N

and k = ωN(1).
220

Let p = 2k/N and k = ωN(1). Let E be the event that Dp has size at least k. By

the Chernoff bound,

1− Pr[E] ≤ exp
(
−DKL

(
p

2 ||p
)
N
)
≤ exp(−Ω(pN)) = o(1)

where DKL is the Kullback-Leibler divergence. By Lemma 8.5.3, conditioning on E

changes the probability of Dp being `-intersective by o(1). Conditioned on E, the

probability that Dp is `-intersective is at least the probability that Dk is `-intersective.

Indeed, both Dp and Dk, after conditioning on a given size reduce to the uniform

distribution over all subsets of that size. Proposition 8.5.2 thus implies Dp is `-

intersective when p = ω(N−1/d(`+1)/2e logN). �

8.6 Upper tails for arithmetic progressions in ran-

dom sets

Here we prove Theorem 8.1.4. Let Γ = Z/NZ. In the following we identify maps

from a set S to R with vectors in RS. For f : Γ→ R, define

Λk(f) =
∑

a,b∈Γ,b 6=0
f(a)f(a+ b)f(a+ 2b) · · · f(a+ (k − 1)b). (8.10)

Observe that for a subset A ⊆ Γ, we have that Λk(1A) counts the number of proper

k-term arithmetic progressions in A. Moreover, Λk is an N -variate polynomial of

degree k. Recall that the gradient of a polynomial p ∈ R[x1, . . . , xn] is the mapping

∇p : Rn → Rn whose ith coordinate is given by (∇p)i = (∂p/∂xi)(x). The proof of

Theorem 8.1.4 follows from a simple corollary of Theorem 8.1.1 and one of the main

results of [BGSZ18]. For the corollary, we consider polynomial mappings given by

gradients of polynomials of the form (8.3).

221

Corollary 8.6.1. Let n, t, d be positive integers. Let H = ([n], E) be a (d + 1)-

hypergraph such that at most t edges are incident on any given pair of vertices. Then,

1
n
w
(
(∇pH)({0, 1}n)

)
.d tn

1− 1
2dd/2e

√
log n.

Proof. For each i ∈ [n] let Hi = ([n], Ei) be the d-hypergraph with edge set

Ei = {e \ {i} : e ∈ E(H) and i ∈ e}.

The claim now follows from Theorem 8.1.1 as pHi = (∇pH)i each Hi has degree at

most t. �

Theorem 8.6.2 (Bhattacharya–Ganguly–Shao–Zhao). Let k ≥ 3 be a fixed integer

and let σ, τ be positive real numbers such that

1
N
w
(
∇Λk({0, 1}Γ)

)
. N1−σ(logN)τ .

Let p ∈ (0, 1) be bounded away from 1 and let δ > 0 be such that δ = O(1) and

min{δpk, δ2p} & N−σ/3(logN)1+τ/3.

Then,

log Pr[Λk(Γp) ≥ (1 + δ)EΛk(Γp)] = −
(
1 + o(1)

)
φp
(
(1 + o(1))δ

)
. (8.11)

Moreover, provided δpkN2 →∞ and N is prime, we have

φp(δ) � N min{
√
δpk/2 log(1/p), δ2p}.

222

of Theorem 8.1.4. Let H = (Γ, E) be the hypergraph whose edges are the (un-

ordered) proper k-term arithmetic progressions in Γ. Then, accounting for the fact

that Λk distinguishes between the same progression with step b run forward from a

point a or backward from a+ (k − 1)b and since N is prime, we have 2pH = Λk. We

claim that every pair of distinct vertices appears in O(k2) edges. First note that H is

2-transitive, since for any two pairs of distinct vertices (a, b), (c, d), the affine linear

map x 7→ c(x− b)/(a− b)+d(x−a)/(b−a) sends a to c, b to d and preserves progres-

sions. It follows that every pair of distinct vertices is contained in the same number of

edges. Since each edge contains
(
k
2

)
pairs, the claim follows by double-counting. By

Corollary 8.6.1, we may thus set σ = 1/(2d(k− 1)/2e) and τ = 1/2 in Theorem 8.6.2

and it follows that for constant δ, the estimate (8.11) holds if

pk & min{δpk, δ2p} & N−
1

6d(k−1)/2e (logN)1+1/6.

Taking kth roots now gives the claim. �

8.7 Proof of Lemma 8.1.5

In this section we give a proof Lemma 8.1.5. As explained in the proof of Theo-

rem 8.1.1, it suffices to prove the statement when the coordinates of ψ are given by

pHi (as in (8.3)) for d-uniform hypergraphs H1, . . . , Hk. Let ΛHi be a d-multilinear

form such that pHi(x) = ΛHi(x, x, . . . , x). Let g = (g1, . . . , gk) be vector of inde-

pendent standard Gaussians and ε = (ε1, . . . , εk) be uniformly random in {−1, 1}k.

223

Then,

w
(
ψ({0, 1}n)

)
= Eg sup

x∈{0,1}n

∣∣∣∣∣
k∑
i=1

gipHi(x)
∣∣∣∣∣

= Eg sup
x∈{0,1}n

∣∣∣∣∣
k∑
i=1

giΛHi(x, . . . , x)
∣∣∣∣∣

≤ Egn
∑k

i=1 1/ri

∥∥∥∥∥
k∑
i=1

giΛHi

∥∥∥∥∥
= nEgEε

∥∥∥∥∥
k∑
i=1

εigiΛHi

∥∥∥∥∥ ,
where in the last line we used that each gi is symmetrically distributed, that is, gi

and −gi have the same distribution. By Jensen’s inequality, the above expectation

over ε is at most

Eε
∥∥∥∥∥
k∑
i=1

εigiΛHi

∥∥∥∥∥
p
1/p

≤ Tp(Lnr1,...,rs)
 k∑
i−1
‖giΛHi‖

p

1/p

,

where the inequality follows from the definition of the type-p constant of Lnr1,...,rs .

Hence,

w
(
ψ({0, 1}n)

)
≤ nEg Tp(Lnr1,...,rs)

(
k∑
i=1
‖giΛHi‖

p

)1/p

≤ nTp(Lnr1,...,rs)Eg ‖g‖`p max
i
‖ΛHi‖

≤ nTp(Lnr1,...,rs) k
1/p max

i
‖ΛHi‖ ,

where we used the fact that Eg ‖g‖`p ≤ (∑k
i=1 Egi |gi|p)1/p ≤ k1/p(Eg1|g1|2)1/2 = k1/p.

If Hi is a matching hypergraph, using Hölder’s inequality, it is easy to see that

‖ΛHi‖ ≤ 1. If not, by Lemma 8.3.1, we can decompose Hi into d∆(Hi) matchings

and use triangle inequality to conclude that ‖ΛHi‖ ≤ d∆(Hi) which gives the desired

bound.

224

Chapter 9

Local codes for distributed storage

9.1 Introduction

The explosion in the volumes of data being stored online means that duplicating or

triplicating data is not economically feasible. This has resulted in distributed storage

systems employing erasure coding based schemes in order to ensure reliability with

low storage overheads. In recent years Local Reconstruction Codes (LRCs) emerged

as the codes of choice for many such scenarios and have been implemented in a number

of large scale systems e.g., Microsoft Azure [HSX+12] and Hadoop [SAP+13].

Classical erasure correcting codes [MS77] guarantee that data can be recovered if

a bounded number of codeword coordinates is erased. However recovering data typi-

cally involves accessing all surviving coordinates. By contrast, Local Reconstruction

Codes1 (LRCs) distinguish between the typical case when only a small number of

codeword coordinates are erased (e.g., few machines in a data center fail) and a worst

case when a larger number of coordinates might be unavailable, and guarantee that

in the prior case recovery of individual coordinates can be accomplished in sub-linear

time, without having to access all surviving symbols.
1The term local reconstruction codes is from [HSX+12]. Essentially the same codes were called

locally repairable codes in [PD14] and locally recoverable codes in [TB14]. Thankfully all names
above abbreviate to LRCs.

225

LRCs are systematic linear codes, where encoding is a two stage process. In the

first stage, h redundant heavy parity symbols are generated from k data symbols.

Each heavy parity is a linear combination of all k data symbols. During the second

stage, the k + h symbols are partitioned into k+h
r−a sets of size r − a and each set

is extended with a local parity symbols using an MDS code to form a local group.

Encoding as above ensures that when at most a coordinates are erased, any missing

coordinate can be recovered by accessing at most r− a symbols. However, if a larger

number of coordinates (that depends on h) is erased; then all missing symbols can be

recovered by potentially accessing all remaining symbols.

Our description of LRC codes above is not complete. To specify a concrete code we

need to fix coefficients in linear combinations that define h heavy and k+h
r−a ·a local pari-

ties. Different choices of coefficients could lead to codes with different erasure correct-

ing capabilities. The best we could hope for is to have an optimal choice of coefficients

which ensures that our code can correct every pattern of erasures that is correctable

for some setting of coefficients. Such codes always exist and are called Maximally

Recoverable (MR) [CHL07, HCL07] LRCs.2 Combinatorially, an (n, r, h, a, q)-LRC is

maximally recoverable it if corrects every pattern of erasures that can be obtained

by erasing a coordinates in each local group and up to h additional coordinates else-

where. Explicit constructions of MR LRCs are available (e.g., [CK17]) for all ranges

of parameters. Unfortunately, all known constructions require finite fields of very

large size.

Encoding a linear code and decoding it from erasures involve matrix vector mul-

tiplication and linear equation solving respectively. Both of these require perform-

ing numerous finite field arithmetic operations. Having small finite fields results in

faster encoding and decoding and thus improves the overall throughput of the sys-

tem [PGM13, Section 2]. It is also desirable in practice to work over finite fields of
2Maximally recoverable LRCs are called Partial MDS (PMDS) in [Bla13, BHH13] and many

follow up works.

226

characteristic 2. Obtaining MR LRCs over finite fields of minimal size is one of the

central problems in the area of codes for distributed storage.

9.1.1 State of the art and our results

We now summarize what is known about the minimal field size of maximally recover-

able local reconstruction codes with parameters n, r, a and h and first cover the easy

cases.

• When a = 0, LRCs are equivalent to classical erasure correcting codes. In this

case Reed Solomon codes are maximally recoverable, and they have a field size

of roughly n, which is known to be optimal up to constant factors [Bal12].

• When h ≤ 1, there are constructions of maximally recoverable LRCs over fields

of size O(r) [BHH13] which is optimal.

• When r = a + 1, codes in the local groups are necessarily simple repetition

codes. MR LRCs can be obtained by starting with a Reed Solomon code of

length n/r and repeating every coordinate r times. Thus the optimal field size

is Θ(n/r).

This leaves us with the main case, when a ≥ 1, r ≥ a + 2, and h ≥ 2. A num-

ber of constructions have been obtained [Bla13, BHH13, TPD16, GHJY14, HY16,

GHK+17, CK17, BPSY16, GYBS17]. The best constructions for the case of h = 2

are from [BPSY16] and require a field of size O(a · n). For most other settings of

parameters the best families of MR LRCs are from [GYBS17]. They require fields of

size

O
(
r · n(a+1)h−1

)
and O

(
max

(
n/r, rh+a

)h)
. (9.1)

The first bound is typically better when r = Ω(n). The second bound is better when

r � n. Both bounds require q to grow rapidly with the codeword length. We will

now present our results.
227

Lower bound. The bounds in (9.1) exhibit code constructions but not any inherent

limitations. In particular, up until our work it remained a possibility that codes over

fields of size O(n) could exist for all ranges of LRC parameters. We obtain the first

superlinear lower bound on the field size of MR LRCs, prior to our work no superlinear

lower bounds were known in any setting of parameters.

Theorem 9.1.1. Let a and h be fixed constants while r may grow with n. Any

maximally recoverable (n, r, h, a, q)-LRC with g = n/r local groups must have:

q ≥ Ωh,a (n · rα) where α = min {a, h− 2dh/ge}
dh/ge

. (9.2)

The lower bound (9.2) simplifies as follows in some special cases:

• g ≥ h : q ≥ Ωh,a

(
nrmin{a,h−2}

)
• g ≤ h, g divides h and a ≤ h− 2h/g : q ≥ Ωh,a

(
n1+ah/g

)
• g ≤ h, g divides h and a > h− 2h/g : q ≥ Ωh,a (ng−1).

Note that our lower bound is superlinear whenever r is growing with n except

when a = 0 or h = 2 or g = 2 or (g = 3, h = 4, a = 1). Even from a practical

standpoint, r should be thought of as growing with n (like say r =
√
n). This is

because if r is constant, the number of parity checks or redundant symbols (an/r+h)

will be linear in n, and applications of codes in distributed storage demand high rate

codes.

When a = 0, MR LRCs reduce to MDS codes and so there are linear field size

constructions (Reed-Solomon codes). When h = 2, we obtain a linear field size

construction (Theorem 9.4.4). This leaves g = 2 and (g = 3, h = 4, a = 1) as the only

cases where we don’t know if linear field size is enough for MR LRCs.

The parity check view of MR LRCs throws a different light on our lower bound.

The parity check matrix of an MR (n, r, h, a, q)-LRC with g = n/r local groups is an

228

(ag + h)× n matrix of the following form:

H =



A1 0 · · · 0

0 A2 · · · 0
...

0 0 · · · Ag

B1 B2 · · · Bg


. (9.3)

Here A1, A2, · · · , Ag are a×r matrices over Fq, B1, B2, · · · , Bg are h×r matrices over

Fq. The rest of the matrix is filled with zeros. An erasure pattern with ag+h erasures

is correctable iff the corresponding minor in H is non-zero. Thinking of the entries

of the matrices Ai, Bi as variables, every (ag + h) × (ag + h) minor of H is either

identically zero or a non-zero polynomial in those variables. We call the minors with

zero determinant as trivial and the rest as non-trivial. It turns out that the non-trivial

minors of H in (9.3) are exactly those which are obtainable by selecting a columns

in each local group and h additional columns anywhere. There exists an MR LRC

over Fq with these parameters iff there exists an assignment of Fq values to these

variables which makes all the non-trivial minors non-zero. It is easy to see that if

we assign random values from a large enough finite field Fq (say q � nag+h) to the

variables, by Schwartz-Zippel lemma, all the non-trivial minors will be non-zero with

high probability. But this probabilistic argument can only work for very large fields.

Seen this way, it seems very natural to ask what is the smallest field size required to

make all the non-trivial minors non-zero given a matrix with some pattern of zeros.

Thus our lower bound shows that one needs super linear size fields to instantiate H

to make all non-trivial minors non-zero. This is even more surprising when contrasted

with a recent proof of the GM-MDS conjecture by Lovett [Lov18] and independently

by Yildiz and Hassibi [YH18]. This states that a k × n matrix (k ≤ n) with some

229

pattern of zeros such that every k× k minor is non-trivial can be instantiated with a

field of size q ≤ n+ k − 1 to make every k × k minor non-zero.

Upper bounds (Code constructions). MR LRCs that are deployed in practice

typically have a small constant number of global parities, typicially h = 2, 3 [HSX+12].

Without explicit constructions, one has to search over assignments from a small field

to variables in the parity check matrix (9.3) to find an assignment which makes all

the non-trivial minors non-zero. This is prohibitively expensive even for small values

of n and q that are deployed in practice. Note that for random assignments to work

with high probability, the field should be very large. Keeping this in mind, we design

explicit MR LRCs over small field size for h ≤ 3.

• We obtain a family of MR (n, r, h = 2, a, q)-LRCs, where q = O(n) for all

settings of parameters. Prior to our work the best constructions [BPSY16]

required q to be O(a · n) which in general may be up to quadratic in n. If we

require that the field has characteristic two, we get such codes with q = n1+o(1).

• We obtain a family of MR (n, r, h = 3, a, q)-LRCs, where q = O(n3) for all

settings of parameters. Prior to our work the best constructions (9.1) required

q to be up to nΘ(a) for some regimes. If we require that the field has characteristic

two, we can get such codes with q = n3+o(1).

• Given our linear field size construction for h = 2 (and since the problem is

trivial for r = 2), the setting r = 3, a = 1, h = 3 is the next smallest regime

to investigate regarding the existence of MR LRCs over fields of near-linear

size. We construct such MR LRCs with a field size of n · exp(O(
√

log n)) by

developing a new approach to LRC constructions based on elliptic curves and

AP-free sets.

230

9.1.2 Our techniques

Similar to most earlier works in the area we represent LRC codes via their parity

check matrices which look like (9.3). Such matrices H have size (a · g + h)× n and a

simple block structure. Columns are partitioned into r-sized local groups. For each

local group there is a corresponding collection of a rows that impose MDS constraints

on coordinates in the group, and have no support outside the group. Remaining h

rows of H correspond to heavy parity symbols and carry arbitrary values.

To establish our lower bound when g ≥ h, we start with a parity check matrix

of an arbitrary maximally recoverable local reconstruction code. From it, we obtain

a family of large mutually disjoint subsets X1, . . . , Xg in the projective space PFh−1
q ,

such that no hyperplane in PFh−1
q intersects h distinct sets among X1, . . . , Xg. For

example when a = 1 and h ≥ 3, the set Xi is all the pairwise differences of columns of

Bi in (9.3) thought of as points in PFh−1
q . We then show that if q is too small, then

a random hyperplane will intersect h distinct sets among X1, . . . , Xg with positive

probability, which gives the required lower bound. When h > g, each Xi will be a

collection of subspaces in Fhq of dimension roughly h/g such that any collection of g

subspaces, one from each Xi, will span Fhq . Again we show that if q is too small, a

random (h− 1)-dimensional subspace will contain a subspace each from Xi with high

probability. The proof is more intricate in this case, because we need to carefully

calculate how subspaces inside each Xi intersect with each other.

We now explain the main ideas behind our constructions. An LRC is MR if any

subset of columns of H (as in (9.3)) that can be obtained by selecting a columns from

each local group and then h more has full rank. Suppose all h additional columns are

selected from distinct local groups. In this case showing that some ag+h columns are

independent easily reduces to showing that a certain (ah+h)× (ah+h) determinant

is non-zero. An important algebraic identity that underlies our constructions for

h = 2 and h = 3 reduces such determinants to much smaller h × h determinants

231

of determinants in the entries of H. A special case of this identity when h = 2 and

matrices are Vandermonde type appears in [BPSY16]. In addition to that we utilize

various properties of finite fields such as the structure of multiplicative sub-groups

and field extensions. In the case of h = 3, we deviate from most existing constructions

of MR LRCs in that we do not use linearized constraints (x, xq, xq2) or Vandermonde

constraints (x, x2, x3) and instead rely on Cauchy matrices [LN83] to specify heavy

parities.

Our construction of MR (n, r = 3, h = 3, a = 1, q)-LRCs is technically disjoint

from our other results. We observe that in this narrow case, MR LRCs are equivalent

to subsets A of the projective plane PF2
q, where A is partitioned in to triples A =

ti{ai, bi, ci} so that some three elements of A are collinear if and only if they constitute

one of the triples {ai, bi, ci} in the partition. Moreover, minimizing the field size of

maximally recoverable local reconstruction codes is in fact equivalent to maximizing

the cardinality of such sets A. By considering all the q+ 1 lines through an arbitrary

point of A, it is easy to see that |A| ≤ q+3. We construct sets A with size |A| ≥ q1−o(1).

For our construction we start with an elliptic curve E over Fq such that the group

of Fq-rational points, E(Fq), is a cyclic group of size Ω(q). We observe that three

points of E(Fq) are collinear if only and only if they sum to zero in the group. We

then select a large AP-free set of points of E(Fq) using the classical construction of

Behrend [Beh46] and complete these points to desired triples.

9.1.3 Related work

The first family of codes with locality for applications in storage comes from [HCL07,

CHL07]. These papers also introduced the concept of maximal recoverability in a

certain restricted setting. The work of [GHSY12] introduced a formal definition of

local recovery and focused on codes that guarantee local recovery for a single failure.

For this simple setting they were able to show that optimal codes must have a certain

232

natural topology, e.g., codeword coordinates have to be arranged in groups where

each group has a local parity. While [GHSY12] focused on systematic codes that

provide local recovery for information symbols, [PD14] considered codes that provide

locality for all symbols and defined local reconstruction codes. In parallel works

maximally recoverable LRCs have been studied in [BHH13, Bla13]. Construction of

local reconstruction codes with optimal distance over fields of linear size has been

given in [TB14]. (Note that distance optimality is a much weaker property than

maximal recoverability, e.g., when a+ h < r it only requires all patterns of size a+ h

to be correctable, while MR property requires lots of very large patterns including

some of size (a+ 1)h to be correctable.)

Maximal recoverability can be defined with respect to more general topologies

then just local reconstruction codes [GHJY14]. The first lower bound for the field

size of MR codes in any topology was recently given in [GHK+17]. This line of

work was continued in [KLR17] where nearly matching upper and lower bounds were

obtained. The topology considered in [GHK+17, KLR17] is a grid-like topology, where

codewords form a codimension one subspace of tensor product codes, i.e., codewords

are matrices, there is one heavy parity symbol, and each row / column constitutes a

local group with one redundant symbol.

Finally, there are few other models of erasure correcting codes that provide efficient

recovery in typical failure scenarios. These include regenerating codes [DGW+10,

WTB17, YB17, GW16] that optimize bandwidth consumed during repair rather

than the number of coordinates (machines) accessed during repair; locally decodable

codes [Yek12] that guarantee sub-linear time recovery of information coordinates even

when a constant fraction of coordinates are erased; and SD codes [Bla13, BPSY16]

that correct a certain subset of failure patterns correctable by MR LRCs.

233

9.1.4 Organization

In Section 9.2, we setup our notation, give formal definitions of local reconstruction

codes and maximal recoverability, and establish some basic facts about MR LRCs. In

Section 9.3, we present our main lower bound on the alphabet size. In Section 9.4, we

introduce the determinantal identity and use it to give a construction of MR LRCs

with two heavy parity symbols over fields of linear size. In Section 9.5, we get explicit

MR codes over fields of cubic size. Finally, in Section 9.6, we focus on the narrow case

of codes with three heavy parities, one parity per local group, and local groups of size

three. We introduce the machinery of elliptic curves and AP free sets and employ it

to obtain maximally recoverable codes over fields of nearly linear size. We conclude

by listing some open problems in Section 9.7. Appendix contains some missing proofs

and proofs of the determinantal identities.

9.2 Preliminaries

We begin by summarizing few standard facts about erasure correcting codes [MS77].

• [n, k, d]q denotes a linear code (subspace) of dimension k, codeword length n,

and Hamming distance d over a field Fq. We often write [n, k, d] or [n, k] instead

of [n, k, d]q when the left out parameters are not important.

• An [n, k, d] code is called Maximum Distance Separable (MDS) if d = n−k+1.

• A linear [n, k, d]q code C can be specified via its parity check matrix H ∈

F(n−k)×n
q , where C = {x ∈ Fnq | H · x = 0}. A code C is MDS iff every (n− k)×

(n− k) minor of H is full rank.

• Let C be an [n, k] code with a parity check matrix H ∈ F(n−k)×n. Let E be a

subset of the coordinates of C. If coordinates in E are erased; then they can

be recovered (corrected) iff the matrix H restricted to coordinates in E has full

rank.
234

We proceed to formally define local reconstruction codes.

Definition 9.2.1. Let r | n, a < r, and h be integers and q be a prime power. Let

g = n
r
. Assume h ≤ n − ag and let k = n − ga − h. A linear [n, k] code C over

a field Fq is an (n, r, h, a, q)-LRC if for each i ∈ [g], restricting C to coordinates

in {r(i − 1) + 1, . . . , ri}, yields a maximum distance separable code with parameters

[r, r − a, a+ 1].

Let [n] = {1, . . . , n}. In what follows we refer to subsets {r(i − 1) + 1, . . . , ri} of

the set of code coordinates [n] as local groups. There are g local groups and each such

group has size r. It is immediate from the Definition 9.2.1 that every (n, r, h, a, q)-LRC

admits a parity check matrix H of the following form

H =



A1 0 · · · 0

0 A2 · · · 0
...

0 0 · · · Ag

B1 B2 · · · Bg


. (9.4)

Here A1, A2, · · · , Ag are a×r matrices over Fq, B1, B2, · · · , Bg are h×r matrices over

Fq. The rest of the matrix is filled with zeros. Every matrix {Ai}i∈[g] is a parity check

matrix of an [r, r−a, a+ 1] MDS code. The bottom h rows of H serve to increase the

code co-dimension from ag to ag + h. Conversely, every matrix H as in (9.4), where

rank(H) = ag + h, and every a × a minor in each {Ai}i∈[g] has full rank, defines an

(n, r, h, a, q)-LRC.

235

Definition 9.2.2. 3 Let C be an arbitrary (n, r, h, a, q)-local reconstruction code. We

say that C is maximally recoverable if for any set E ⊆ [n], |E| = ga + h, where E

is obtained by selecting a coordinates from each of g local groups and then h more

coordinates arbitrarily; E is correctable by the code C.

The term maximally recoverable code is justified by the following observation

(e.g., [GHJY14]): if an erasure pattern cannot be obtained via the process detailed

in the Definition 9.2.2; then it cannot be corrected by any linear code whose parity

check matrix has the shape (9.4). Thus MR codes provide the strongest possible

reliability guarantees given the locality constraints defining the shape of the parity

check matrix.

Existence of MR LRCs can be established non-explicitly [GHJY14] (i.e., by set-

ting the non-zero entries in the matrix (9.4) at random in a large finite field and

then analyzing the properties of the resulting code). There are also multiple explicit

constructions available [CK17, GHJY14, GYBS17]. The key challenge in this line

of work is to determine the minimal size of finite fields where such codes exist. In

practice one is naturally mostly interested in fields of characteristic two.

Notation: We use A & B to denote A = Ω(B) and A . B to denote A = O(B).

We use A = O`(B) and A = Ω`(B) to denote that the hidden constants can depend

on some parameter ` but independent of other parameters.

9.3 The lower bound

In this Section we prove Theorem 9.1.1 which gives a lower bound on the field size

of maximally recoverable local reconstruction codes. We break up the proof of The-
3Alternatively, one could define MR LRCs is as follows. Consider a matrix (9.4). Each way of

fixing non-zero entries in (9.4) gives rise to (instantiates) a linear code. An instantiation is MR if it
corrects all erasure patterns that are correctable for some other instantiation. It can be shown that
under such definition and the minor technical assumption of h ≤ n

r · (r − a)−max
{
n
r , r − a

}
local

codes have to be MDS [GHK+17, Proposition 4] as required in Definition 9.2.1.

236

orem 9.1.1 into two cases based on g ≥ h and g < h and prove the two cases in

Corollary 9.3.6 and Proposition 9.3.7 respectively. Though the underlying ideas in

the lower bound for both the cases are very similar, the g ≥ h case is simpler and

conveys all the main conceptual ideas. So we will prove this case first.

9.3.1 Lower bound when g ≥ h

A code is MR if it corrects every erasure pattern that can be obtained by erasing a

symbols per local group, and then h more. Note that if some local group carries at

most a erasures; then it can be immediately corrected using only the properties of

the local MDS code. Thus we never need to consider erasure patterns spread across

more than h groups. Our lower bound does not use all the properties of MR LRCs,

but only relies on code’s ability to correct all patterns obtained by erasing a + h

elements in a single group as well as all patterns obtained by erasing exactly a + 1

coordinates in some h local groups. Note that here we use the fact that the number

of local groups g is at least h.

The lower bound is obtained by turning a parity check matrix of an MR

(n, r, h, a, q)-LRC into a large collection of points (of size ≈ nra when a ≤ h − 2) in

the projective space PFh−1
q , partitioned into g equal parts X1, . . . , Xg, such that no

hyperplane can intersect h distinct sets in {Xj}j∈[g]. For example when a = 1 and

h ≥ 3, the set Xi is all the pairwise differences of columns of Bi in (9.4) thought of

as points in PFh−1
q and so |Xi| =

(
r
2

)
. In Lemma 9.3.1, we prove the size of such a

collection can be at most O(q) which implies the required lower bound. We will start

by proving Lemma 9.3.1.

Lemma 9.3.1. Let X1, . . . , Xg ⊆ PFdq be mutually disjoint subsets of size t with

g ≥ d+ 1. If

q <
(
g

d
− 1

)
t− 4 (9.5)

237

then there exists a hyperplane H in PFdq which intersects d+ 1 distinct subsets among

X1, · · · , Xg.

Proof. We will show that a random hyperplane will intersect d + 1 distinct subsets

among X1, . . . , Xg with positive probability if q <
(
g
d
− 1

)
t− 4. Choose a uniformly

random hyperplane H in PFdq . Fix some i ∈ [g], we will first lower bound the proba-

bility that H intersects Xi. Let the random variable Z = |H∩Xi|. Since a hyperplane

contains |PFd−1
q | points,

E[Z] =
|PFd−1

q |
|PFdq |

t.

We can also estimate the second moment as follows:

E[Z2] = E[Z] +
∑

p,p′∈Xi,p 6=p′
Pr[p, p′ ∈ H]

= E[Z] + t(t− 1)
|PFd−2

q |
|PFdq |

where we used the fact that the number of hyperplanes containing two fixed distinct

points is |PFd−2
q |. Now we can lower bound Pr[Z > 0] as:

Pr[Z > 0] ≥ E[Z]2
E[Z2] ≥

t/q

1 + t/q
(1− 1/qd)2.

Since X1, . . . , Xg are mutually disjoint subsets of PFdq of size t, gt ≤ |PFdq | ≤ (d+1)qd.

Therefore

Pr[H ∩Xi 6= φ] = Pr[Z > 0] ≥ t

t+ q

(
1− 2

qd

)
≥ t

t+ q

(
1− 2(d+ 1)

gt

)

By linearity of expectation, a random hyperplane H intersects≥ g· t
t+q

(
1− 2(d+1)

gt

)
sets among X1, . . . , Xg in expectation. Therefore if gt

(q+t)

(
1− 2(d+1)

gt

)
> d, there exists

a hyperplane which intersects d+ 1 distinct subsets among X1, . . . , Xg. Rearranging

this inequality, such a hyperplane exists whenever q <
(
g
d
− 1

)
t− 2(d+1)

d
. �

238

We are now ready to prove the lower bound. We will first prove a lower bound

under the assumption that a + 2 ≤ h. Later in Proposition 9.3.5, we generalize our

argument to take care of the case when h < a+ 2.

Proposition 9.3.2. When a+ 2 ≤ h ≤ n/r, any maximally recoverable (n, r, h, a, q)-

local reconstruction code must have

q ≥
(
n/r

h− 1 − 1
)
·
(

r

a+ 1

)
− 4 (9.6)

Proof. It might be helpful to the reader to think of the a = 1 case through out the

proof, as things get simpler. When a = 1, wlog, one can assume that the entries of

the matrices Ai in (9.7) (which will have only one row) are all 1’s.

Consider an arbitrary maximally recoverable (n, r, h, a, q)-LRC C with g = n
r

local

groups. According to the discussion in Section 9.2 the code C admits a parity check

matrix of the shape 

A1 0 · · · 0

0 A2 · · · 0
...

0 0 · · · Ag

B1 B2 · · · Bg


. (9.7)

Here A1, A2, · · · , Ag are a × r matrices over Fq, B1, B2, · · · , Bg are h × r matrices

over Fq. The rest of the matrix is filled with zeros. Every a× a minor in each matrix

{Ai}i∈[g] has full rank. So for every subset S ⊂ [r] of size |S| = a + 1, Ai(S) is an

a × (a + 1) matrix of full rank. Let Ai(S)⊥ ∈ Fa+1
q be a non-zero vector orthogonal

to the row space of Ai(S) i.e. Ai(S)Ai(S)⊥ = 0. Note that Ai(S)⊥ is unique upto

239

scaling. For i ∈ [g] and each subset S ⊆ [r] of size |S| = a+ 1, define pi,S ∈ Fhq as 4

pi,S = Bi(S)Ai(S)⊥.

The MR property implies that any subset of columns of the parity check ma-

trix (9.7) which can be obtained by picking a columns in each local group and h

arbitrary additional columns is full rank. We will use this property to make two

claims about the vectors {pi,S} .

Claim 9.3.3. For every distinct `1, · · · , `h ∈ [g] and subsets S1, · · · , Sh ⊆ [r] of size

a+ 1 each, the h× h matrix [p`1,S1 , · · · , p`h,Sh] is full rank.

Proof. Consider the following matrix equation:



A`1(S1) 0 · · · 0

0 A`2(S2) · · · 0
...

0 0 · · · A`h(Sh)

B`1(S1) B`2(S2) · · · B`h(Sh)





A`1(S1)⊥ 0 · · · 0

0 A`2(S2)⊥ · · · 0
...

0 0 · · · A`h(Sh)⊥



=



0 0 · · · 0

0 0 · · · 0
...

0 0 · · · 0

p`1,S1 p`2,S2 · · · p`h,Sh


.

Let us denote the matrices which occur in the above equation as M1,M2,M3 respec-

tively so that the above equation becomes M1M2 = M3. By MR property, when we

erase the coordinates corresponding to S1, · · · , Sh in groups `1, · · · , `h respectively,

4When a = 1, one can take Ai(S)⊥ =
[

1
−1

]
and so pi,S = Bi(j) − Bi(j′) where S = {j, j′};

therefore {pi,S : |S| = a+ 1} is just the set of all pairwise differences of columns of Bi.

240

the resulting erasure pattern is correctable. This implies that M1 has full rank. Also

M2 has full column rank because its columns are non-zero and have disjoint sup-

port. Therefore M3 should have full rank which implies that [p`1,S1 , · · · , p`h,Sh] is full

rank. �

In particular the vectors pi,S are nonzero for every i ∈ [g] and S ∈
(

[r]
a+1

)
. We can

also conclude that across different local groups, pi,S and pj,T are never multiples of

each other when i 6= j. In fact, we will now show that even in the same local group,

pi,S and pi,T are not multiples of each other unless S = T.

Claim 9.3.4. For every i ∈ [g], no two vectors in {pi,S : S ⊆
(

[r]
a+1

)
} are multiples of

each other.

Proof. Suppose pi,S = λ · pi,T for some distinct sets S, T ⊂ [r] of size a + 1 each and

some nonzero λ ∈ Fq. So,

Ai(S)

Bi(S)

 · Ai(S)⊥ − λ ·

Ai(T)

Bi(T)

 · Ai(T)⊥ =

 0

pi,S

− λ ·
 0

pi,T

 = 0

Note that every coordinate of Ai(S)⊥ is non-zero. If not, then it will imply a linear

dependency between a columns of Ai(S) whereas we know that every a× a minor of

Ai(S) is non-zero. Thus we have a linear combination of the columns of

Ai(S ∪ T)

Bi(S ∪ T)


which is zero. Moreover the combination is non-trivial because there is some j ∈ S\T

and the column Ai(j) has a nonzero coefficient. However

|S ∪ T | ≤ 2a+ 2 ≤ a+ h. (9.8)

By the MR property, any set of columns of the matrix

Ai
Bi

 of size at most a+h has

to be full rank, as this set can be obtained by selecting (a subset of) a and then h more

241

columns from the matrix (9.7). Thus we arrive at a contradiction that completes the

proof of the claim. �

By Claim 9.3.4 and the discussion above the claim, we can think of

{
pi,S : i ∈ [g], S ∈

(
[r]
a+ 1

)}

as distinct points in PFh−1
q . For brevity, from here on we assume that pi,S refers

to the corresponding point in PFh−1
q . Define sets X1, · · · , Xg ⊆ PFh−1

q as Xi ={
pi,S : S ∈

(
[r]
a+1

)}
, we have |X1| = |X2| = · · · = |Xg| =

(
r

a+1

)
and they are mu-

tually disjoint. Also g ≥ h by the hypothesis. By Claim 9.3.3, there is no hyperplane

in PFh−1
q which contains h points from distinct subsets of X1, · · · , Xg. So applying

Lemma 9.3.1,

q ≥
(

g

h− 1 − 1
)
·
(

r

a+ 1

)
− 4,

which concludes the proof. �

In the argument above we used vectors {pi,S} , where i varies across indices of g

local groups and S varies across all
(

r
a+1

)
subsets of [r] of size a+ 1. In the proof we

relied on the condition a+ 2 ≤ h to ensure that the union of any two such sets S has

size at most a+ h.

Parikshit Gopalan [Gop17] has observed (and kindly allowed us to include his

observation here) that we can generalize Proposition 9.3.2 to the case when h < a+2.

To do this, in cases when h < a+ 2 we only consider sets S that have size a+ 1 but

are constrained to contain the set {1, 2, . . . , a+ 2− h}, as this ensures that pairwise

unions still have size at most a+h. Clearly, the total number of such sets is
(
r−a+h−2
h−1

)
.

The rest of the proof remains the same and yields the following

242

Proposition 9.3.5. Assume h < a+ 2 and h ≤ n/r; then any maximally recoverable

(n, r, h, a, q)-local reconstruction code must have

q ≥
(
n/r

h− 1 − 1
)
·
(
r − a+ h− 2

h− 1

)
− 4. (9.9)

The following corollary follows immediately from Propositions 9.3.2 and 9.3.5 and

presents the asymptotic form of our field size lower bound when g ≥ h.

Corollary 9.3.6. Suppose that a and h are arbitrary constants, but r may grow with

n. Further suppose that h ≤ n/r. In every maximally recoverable (n, r, h, a, q)-LRC,

we have:

q ≥ Ωa,h

(
n · rmin{a,h−2}

)
. (9.10)

9.3.2 Lower bound when g ≤ h

In this case, we cannot distribute the h additional erasures among h different local

groups. Instead we will look at erasure patterns where either all the extra h erasures

occur in the same group or they are spread equally (dh/ge or bh/gc) in the g local

groups. The setsX1, . . . , Xg will now be a collection of subspaces of dimension roughly

h/g such that no (h− 1)-dimensional subspace can contain a subspace each from all

of X1, . . . , Xg. To obtain the lower bound, we show that if q is too small, a random

(h − 1)-dimensional subspace will contain a subspace from each of X1, . . . , Xg with

high probability. The argument is more involved than in the g ≥ h case, because the

subspaces inside each Xi can intersect non-trivially and the analysis has to account

for this carefully. We obtain the following lower bound, the proof of which appears

in Section 9.8.

Proposition 9.3.7. Suppose that a, g, h are fixed constants such that g ≤ h. In every

maximally recoverable (n, r, h, a, q)-LRC with g local groups each of size r = n/g, we

243

have:

q ≥ Ωa,h,g

(
n1+α

)
where α = min{a, h− 2dh/ge}

dh/ge
. (9.11)

9.4 Maximally recoverable LRCs with h = 2

In this section we present our construction of maximally recoverable local reconstruc-

tion codes with two heavy parity symbols. Our construction relies on a determinantal

identity (Lemma 9.4.1) and properties of F∗q, the multiplicative group of the field Fq.

The following identity conveniently reduces the (ah+h)× (ah+h) determinants that

arise during our analysis into h× h determinants which are much easier to calculate.

We will prove Lemma 9.4.1 in Section 9.9.

Lemma 9.4.1. Let C1, · · · , Ch be a× (a+ 1) dimensional matrices and D1, · · · , Dh

be h × (a + 1) dimensional matrices over a field and let D(j)
i be the jth row of Di.

Then,

det



C1 0 · · · 0

0 C2 · · · 0
...

0 0 · · · Ch

D1 D2 · · · Dh


= (−1)

ah(h−1)
2 det



det

 C1

D
(1)
1

 · · · det

 Ch
D

(1)
h


...

det

 C1

D
(h)
1

 · · · det

 Ch
D

(h)
h




.

Lemma 9.4.2. Let r | n, a < r be integers. Let g = n
r
. Assume that n − ga − 2 is

positive. Suppose q is a prime power such that there exists a subgroup of F∗q of size at

least r and with at least n/r cosets; then there exists an explicit maximally recoverable

(n, r, h = 2, a, q)-local reconstruction code.

Proof. Let G ⊂ F∗q be the multiplicative subgroup from the statement of the theorem.

Let α1, α2, · · · , αr ∈ G be distinct elements from G and let λ1, λ2, · · · , λg ∈ F∗q be

elements from distinct cosets of G. We specify our code via a parity check matrix of
244

the form (9.4). For i ∈ [g], we choose matrices {Ai} and {Bi} as:

Ai =



α1 α2 · · · αr

α2
1 α2

2 · · · α2
r

...

αa1 αa2 · · · αar


; Bi =

 λi λi · · · λi

αa+1
1 αa+1

2 · · · αa+1
r

 . (9.12)

Suppose that we have a erasures per local group and two more. We can easily correct

the coordinates corresponding to local groups which have at most a erasures in them.

This is because every matrix Ai is a Vandermonde matrix and all its a×a minors are

nonzero. Now we are left with two cases:

Case 1: Both the extra erasures occurred in the same local group. Say, the ith local

group. In this case, we can correct the erased coordinates because any (a+2)×(a+2)

minor of

Ai
Bi

 (which is a Vandermonde matrix) is non degenerate.

Case 2: The two extra erasures occur in different groups say groups ` and `′, so we

are left with two groups with a + 1 erasures in each. Let S be the columns erased

in group ` and let S ′ be the columns erased in group `′. We want to argue that the

following (2a+ 2)× (2a+ 2) submatrix is full rank:

M =


A`(S) 0

0 A`′(S ′)

B`(S) B`′(S ′)

 . (9.13)

245

Let S = {γ1, γ2, · · · , γa+1} and S ′ = {γ′1, γ′2, · · · , γ′a+1}, then by Lemma 9.4.1,

det(M) = 0 ⇐⇒ det



det

 A`(S)

B`(S)(1)

 det

 A`′(S ′)

B`′(S ′)(1)


det

 A`(S)

B`(S)(2)

 det

 A`′(S ′)

B`′(S ′)(2)




= 0

⇐⇒ det



det



γ1 · · · γa+1

γ2
1 · · · γ2

a+1
...

γa1 · · · γaa+1

λ` · · · λ`


det



γ′1 · · · γ′a+1

(γ′1)2 · · · (γ′a+1)2

...

(γ′1)a · · · (γ′a+1)a

λ`′ · · · λ`′



det



γ1 · · · γa+1

γ2
1 · · · γ2

a+1
...

γa1 · · · γaa+1

γa+1
1 · · · γa+1

a+1


det



γ′1 · · · γ′a+1

γ′1
2 · · · (γ′a+1)2

...

γ′1
a · · · (γ′a+1)a

γ′1
a+1 · · · (γ′a+1)a+1





= 0

⇐⇒ det

 λ` λ`′∏
i∈[a+1] γi

∏
i∈[a+1] γ

′
i

 = 0

where we factored out the (nonzero) Vandermonde determinant from each column.

Since γi, γ′i ∈ G and λ`, λ`′ are in different cosets of G, the last determinant is not

zero. �

In Lemma 9.4.2, given n and r such that r | n, we want to find a small field Fq

such that F∗q contains a subgroup of size at least r and with at least n/r cosets. For

example, if n+ 1 is a prime power, then we can take q = n+ 1. The following lemma

shows that one can always find such a field of size q = O(n). We defer the proof to

the Appendix.

246

Lemma 9.4.3. Let r, n be some positive integers with r ≤ n. Then there exists a

finite field Fq with q = O(n) such that the multiplicative group F∗q contains a subgroup

of size at least r and with at least n/r cosets. If additionally we require that the field

has characteristic two, then such a field exists with q = n · exp(O(
√

log n)).

Combining Lemma 9.4.3 with Lemma 9.4.2 gives the following theorem.

Theorem 9.4.4. Let r | n, a < r be integers. Let g = n
r
. Assume that n − ga − 2

is positive. Then there exists an explicit maximally recoverable (n, r, h = 2, a, q)-local

reconstruction code with q = O(n). If we require the field to be of characteristic 2,

such a code exists with q ≤ n · exp(O(
√

log n)).

9.5 Maximally recoverable LRCs with h = 3

In this section, we present our construction of maximally recoverable local reconstruc-

tion codes with three heavy parity symbols. Our construction extends the ideas in

the construction of Section 9.4 using field extensions. In addition to the determinan-

tal identity 9.4.1, we will need the following identity which follows immediately from

Lemma 9.9.2.

Lemma 9.5.1. Let C1 be an a× (a+ 1) matrix, C2 be an a× (a+ 2) matrix, D1 be

a 3× (a+ 1) matrix and D2 be a 3× (a+ 2) matrix and let D(j)
i be the jth row of Di.

Then,

det


C1 0

0 C2

D1 D2

 = 0

⇐⇒ det

 C1

D
(1)
1

 · det


C2

D
(2)
2

D
(3)
2

− det

 C1

D
(2)
1

 · det


C2

D
(1)
2

D
(3)
2

+ det

 C1

D
(3)
1

 · det


C2

D
(1)
2

D
(2)
2

 = 0

247

Our construction is based on Cauchy matrices, so we will also need the the fol-

lowing lemma about the determinants of such matrices.

Lemma 9.5.2. ([LN83]) Let α1, · · · , αm, β1, · · · , βm ∈ Fq be all distinct; then

det



1
α1−β1

1
α2−β1

· · · 1
αm−β1

1
α1−β2

1
α2−β2

· · · 1
αm−β2

...
1

α1−βm
1

α2−βm · · · 1
αm−βm


=
∏
i>j(αi − αj)(βj − βi)∏

i,j(αi − βj)

Matrices of the above form are called Cauchy matrices. Every minor of a Cauchy

matrix is nonzero because the minors themselves look like a Cauchy matrix. We are

now ready to present the construction for three global parities.

Lemma 9.5.3. Let r | n, a < r be integers. Let g = n
r
. Assume that n − ga − 3 is

positive. Suppose q0 ≥ 2r + 3 is a prime power such that there exists a subgroup of

F∗q0 of size at least r + 2 and with at least n/r cosets. Then there exists an explicit

maximally recoverable (n, r, h = 3, a, q = q3
0)-local reconstruction code.

Proof. Let G ⊂ F∗q0 be the multiplicative subgroup from the statement of the theorem.

Choose distinct βa+1, βa+2, βa+3 ∈ Fq0 and let

Ω =
{
α ∈ Fq0 : α− βa+2

α− βa+3
∈ G

}
.

Clearly |Ω| = |G| − 1 ≥ r + 1, so we can choose distinct α1, · · · , αr ∈ Ω \ {βa+1}.

Finally, since q0 ≥ 2r + 3 ≥ r + a + 3, we can choose distinct β1, · · · , βa ∈ Fq0 \

{α1, · · · , αr, βa+1, βa+2, βa+3}. Let µ1, · · · , µg ∈ Fq0 be elements from distinct cosets

of G.

Now let Fq be a degree 3 extension of Fq0 , so we have q = q3
0. As Fq is a 3-

dimensional vector space over Fq0 , choose a basis v0, v1, v2 ∈ Fq for this space and

248

choose distinct γ1, · · · , γg ∈ Fq0 . Define λi = v0 + γiv1 + γ2
i v2. Then any three of

the elements λ1, · · · , λg ∈ Fq are linearly independent over Fq0 ; we call this property

3-wise independence over Fq0 . Define the matrices Ai and Bi as follows:

Ai =


1

α1−β1
· · · 1

αr−β1

...
1

α1−βa · · ·
1

αr−βa

 ; Bi =


λi

α1−βa+1
· · · λi

αr−βa+1

µi
α1−βa+2

· · · µi
αr−βa+2

1
α1−βa+3

· · · 1
αr−βa+3

 (9.14)

Now we will show that the above construction satisfies the MR property. We have

a erasures per local group and 3 more. We can easily correct groups with only a

erasures because Ai are Cauchy matrices where every a× a minor is non-degenerate.

So we only need to worry about local groups with more than a erasures. There are

three cases.

Case 1: All three extra erasures in the same group.

Say we have a+ 3 erasures in local group i, then we can correct these errors because

the matrix

Ai
Bi

 is a Cauchy matrix (except for some scaling factors in the rows),

and therefore each of its (a+ 3)× (a+ 3) minors is nonzero by Lemma 9.5.2.

Case 2: The three extra erasures are distributed across two groups.

Suppose the extra erasures occur in groups `, `′ with (a + 1) erasures in group `

corresponding to a subset S ⊆ [r] of its columns and (a + 2) erasures in group `′

corresponding to a subset S ′ ⊆ [r] of its columns. To correct these erasures we need

to show the following matrix is full rank:


A`(S) 0

0 A`′(S ′)

B`(S) B`′(S ′)

 . (9.15)

249

By Lemma 9.5.1, the above matrix fails to be full rank iff

det

 A`(S)

B`(S)(1)

 · det


A`′(S ′)

B`′(S ′)(2)

B`′(S ′)(3)

− det

 A`(S)

B`(S)(2)

 · det


A`′(S ′)

B`′(S ′)(1)

B`′(S ′)(3)



+ det

 A`(S)

B`(S)(3)

 · det


A`′(S ′)

B`′(S ′)(1)

B`′(S ′)(2)

 = 0

The above determinant is a Fq-linear combination of λ` and λ`′ and the coefficient of

λ`, which arises from the first term, is nonzero because

A`
B`

 and

A`′
B`′

 are Cauchy

matrices. By 3-wise independence of λ’s, this linear combination cannot be zero, and

therefore the matrix (9.15) has full rank.

Case 3: The three extra erasures occur in distinct groups.

Suppose the three extra erasures occur in groups `1, `2, `3 ∈ [g] and let S1, S2, S3 ⊆ [r]

be sets of size a+ 1 corresponding to the erasures in the groups `1, `2, `3 respectively.

To correct these erasures we need to show the following matrix is full rank:



A`1(S1) 0 0

0 A`2(S2) 0

0 0 A`3(S3)

B`1(S1) B`2(S2) B`3(S3)



250

By Lemma 9.4.1, if the above matrix is not full rank then

det



det

A`1(S1)

B
(1)
`1 (S1)

 det

A`2(S2)

B
(1)
`2 (S2)

 det

A`3(S3)

B
(1)
`3 (S3)


det

A`1(S1)

B
(2)
`1 (S1)

 det

A`2(S2)

B
(2)
`2 (S2)

 det

A`3(S3)

B
(2)
`3 (S3)


det

A`1(S1)

B
(3)
`1 (S1)

 det

A`2(S2)

B
(3)
`2 (S2)

 det

A`3(S3)

B
(3)
`3 (S3)





= 0.

For k ∈ {1, 2, 3}, let ck = ∏
i>j,i,j∈Sk(αi − αj), d = ∏

i>j,i,j∈[a](βj − βi), ek =∏
i∈Sk,j∈[a](αi − βj). By Lemma 9.5.2, we can write down explicit expressions for the

entries in the above determinant to get:

det



λ`1
c1d
∏
i∈[a](βi−βa+1)

e1
∏
i∈S1

(αi−βa+1) λ`2
c2d
∏
i∈[a](βi−βa+1)

e2
∏
i∈S2

(αi−βa+1) λ`3
c3d
∏
i∈[a](βi−βa+1)

e3
∏
i∈S3

(αi−βa+1)

µ`1
c1d
∏
i∈[a](βi−βa+2)

e1
∏
i∈S1

(αi−βa+2) µ`2
c2d
∏
i∈[a](βi−βa+2)

e2
∏
i∈S2

(αi−βa+2) µ`3
c3d
∏
i∈[a](βi−βa+2)

e3
∏
i∈S3

(αi−βa+2)

c1d
∏
i∈[a](βi−βa+3)

e1
∏
i∈S1

(αi−βa+3)
c2d
∏
i∈[a](βi−βa+3)

e2
∏
i∈S2

(αi−βa+3)
c3d
∏
i∈[a](βi−βa+3)

e3
∏
i∈S3

(αi−βa+3)


= 0.

We can scale rows and columns to conclude that

det


λ`1

∏
i∈S1

(
αi−βa+3
αi−βa+1

)
λ`2

∏
i∈S2

(
αi−βa+3
αi−βa+1

)
λ`3

∏
i∈S3

(
αi−βa+3
αi−βa+1

)
µ`1

∏
i∈S1

(
αi−βa+3
αi−βa+2

)
µ`2

∏
i∈S2

(
αi−βa+3
αi−βa+2

)
µ`3

∏
i∈S3

(
αi−βa+3
αi−βa+2

)
1 1 1

 = 0.

By the choice of α’s, ∏i∈Sj

(
αi−βa+3
αi−βa+2

)
∈ G for j = 1, 2, 3. By writing the Laplace

expansion of the determinant over the first row, the above determinant is a linear

combination in λ`1 , λ`2 , λ`3 with coefficients from Fq0 . The coefficients of λ’s in this

251

linear combination are nonzero because µ`1 , µ`2 , µ`3 belong to distinct cosets of G in

F∗q0 . Because λ’s are 3-wise independent over Fq0 , we get a contradiction. �

Combining Lemma 9.5.3 with Lemma 9.4.3 gives the following theorem.

Theorem 9.5.4. Let r | n, a < r be integers. Let g = n
r
≥ 2. Assume that n− ga− 3

is positive. Then there exists an explicit maximally recoverable (n, r, h = 3, a, q)-local

reconstruction code with q = O(n3). If we require the field to be of characteristic 2,

such a code exists with q = n3 · exp(O(
√

log n)).

9.6 Maximally recoverable LRCs from elliptic

curves

Our construction of MR (n, r = 3, h = 3, a = 1, q)-LRCs is technically disjoint from

our results in the previous sections. We observe that in this narrow case, maximally

recoverable LRCs are equivalent to families of matching collinear triples in the pro-

jective plane PF2
q, i.e., sets of points partitioned into collinear triples, where no three

points other than those forming a triple are collinear. In Section 9.6.1 we state the

quantitative parameters of such a family A that we can obtain and translate those

to parameters of an MR LRC. The goal of Section 9.6.2 is to construct the family

A using elliptic curves and 3-AP free sets. In Section 9.6.2 we develop the necessary

machinery of elliptic curves, and in Section 9.6.2 we carry out the construction.

9.6.1 LRCs from matching collinear triples

We will reduce the problem of constructing maximally recoverable codes for h =

3, r = 3, a = 1 to the problem of constructing matching collinear triples in PF2
q which

we define below.

252

Definition 9.6.1. We say that A ⊂ PF2
q has matching collinear triples if A can be

partitioned into triples, A = tmi=1{ai, bi, ci}, such that the only collinear triples in A

are {ai, bi, ci} for i ∈ [m].

What is the largest subset A ⊂ PF2
q with matching collinear triples? If we consider

all the q + 1 lines through some fixed point of A, at most one line can contain two

other points of A. All other lines can contain at most one other point of A. So

|A| ≤ q + 3. The following lemma shows that we can construct a set A with size

|A| ≥ q1−o(1). It is an interesting open question if we can get |A| ≥ Ω(q).

Lemma 9.6.2. For any prime power q, there is an explicit set A ⊂ PF2
q with matching

collinear triples of size |A| ≥ q·exp(−C
√

log q) where C > 0 is some absolute constant.

We will prove Lemma 9.6.2 in Section 9.6.2.

Lemma 9.6.3. Assume g ≥ 2. There exists a subset S ⊂ PF2
q that has g matching

collinear triples if and only if there exists a maximally recoverable (3g, r = 3, h =

3, a = 1, q)-local reconstruction code.

Proof. We first show how to obtain codes from families of collinear triples. Let S =

∪gi=1{ai, bi, ci} be such that the only collinear triples in S are {ai, bi, ci} for i ∈ [g].

From now, we will think of elements of S as vectors in F3
q such that every triple of

points except for the triples {ai, bi, ci} are linearly independent. We can scale each

vector with nonzero elements in Fq such that ai + bi + ci = 0 in F3
q for every i ∈ [g].

For i ∈ [g], define blocks Ai and Bi of the parity check matrix (9.4) as:

Ai =
[
1 1 1

]
; Bi =

[
0 −bi ci

]
.

We need to correct 1 erasure per group and any 3 extra erasures. We can correct

groups with a single erasure because Ai is a simple parity check constraint on all the

253

coordinates of the group. We now have to correct groups with more than one erasure,

there are two cases:

Case 1: The three extra erasures are in two groups.

Suppose the two groups are i, j and in group i all the coordinates are erased and in

group j the second and third coordinates are erased (the other two cases are similar).

To correct these erasures, we have to argue that the following matrix is full rank:


1 1 1 0 0

0 0 0 1 1

0 −bi ci −bj cj



Subtract the first column in each group from the rest, it is equivalent to the following

matrix being full rank:


1 0 0 0 0

0 0 0 1 0

0 −bi ci −bj cj + bj

 =


1 0 0 0 0

0 0 0 1 0

0 −bi ci −bj aj



which is true because bi, ci, aj are linearly independent.

Case 2: The three extra erasures are in distinct groups.

Suppose the three groups are i, j, k and in each group the second and third columns

are erased (the other cases are similar). To correct these erasures, we have to argue

that the following matrix is full rank:



1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

−bi ci −bj cj −bk ck



254

Subtract the first column in each group from the rest, it is equivalent to the following

matrix being full rank:



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

−bi ci + bi −bj cj + bj −bk ck + bk


=



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

−bi −ai −bj −aj −bk −ak



which is true because ai, aj, ak are linearly independent.

Reverse connection. We now proceed to show how to obtain a set with matching

collinear triples from codes. Given a maximally recoverable (3g, r = 3, h = 3, a =

1, q)-local reconstruction code with a parity check matrix (9.4), without loss of gen-

erality assume that for all i ∈ [g],

Ai =
[
1 1 1

]
; Bi =

[
v1
i v2

i v3
i

]
,

where {vsi }s∈[3],i∈[g] ⊆ F3
q. For each i ∈ [g], define

ai = v2
i − v1

i bi = v3
i − v2

i ci = v1
i − v3

i .

Clearly, for all i ∈ [g], ai + bi + ci = 0. Consider {ai, bi, ci}i∈[g] as elements of PF2
q

and define our family to be S = ∪gi=1{ai, bi, ci}. It remains to show that all triples

of elements of S other than {ai, bi, ci} are non-collinear. When all three elements

vαi − v
β
i , v

γ
j − vδj , vεk − v

ζ
k belong to different groups this follows from the fact that, as

255

implied by the MR property, the matrix



1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

vβi vαi vδj vγj vζk vεk


=



1 0 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 0

vβi vαi − v
β
i vδj vγj − vδj vζk vεk − v

ζ
k



is full rank. When triples come from two groups, (say, vβi − vαi , v
γ
i − vαi , vδj − vεj) this

again follows from the MR property, as the matrix


1 1 1 0 0

0 0 0 1 1

vαi vβi vγi vεj vδj

 =


1 0 0 0 0

0 0 0 1 0

vαi vβi − vαi vγi − vαi vεj vδj − vεj



is also full rank. �

Combining Lemma 9.6.2 and Lemma 9.6.3 along with the fact that all the con-

structions are explicit gives the following theorem.

Theorem 9.6.4. For any n > 3 which is a multiple of 3 and for any finite field

Fq, there exists an explicit maximally recoverable (n, r = 3, h = 3, a = 1, q)-local

reconstruction code provided that q ≥ Ω
(
n · exp

(
C
√

log n
))

where C > 0 is some

absolute constant.

9.6.2 Matching Collinear Triples from AP free sets

In this section, we will prove Lemma 9.6.2 by constructing a large A ⊂ PF2
q with

matching collinear triples. The main idea is to reduce the problem to construct-

ing a large subset A ⊂ Z/NZ with matching tri-sums where N = Ω(q). A sub-

set A ⊂ Z/NZ has matching tri-sums if A can partitioned into disjoint triples,

A = ti{ai, bi, ci} such that the only 3 element subsets of A which sum to zero are
256

the triples {ai, bi, ci} in the partition. Such sets can be constructed from subsets of

[N] without any non-trivial arithmetic progressions. The best known construction

of a subset of [N] with no non-trivial three term arithmetic progressions is due to

Behrend [Beh46] which was slightly improved in [Elk11]. An explicit construction

with similar bounds as [Beh46] was given in [Mos53].

Theorem 9.6.5 ([Beh46, Mos53, Elk11]). For some absolute constant C > 0, there

exists an explicit A ⊂ {1, 2, · · · , N} with |A| ≥ N · exp(−C
√

logN) which doesn’t

contain any 3 term arithmetic progressions i.e. there doesn’t exist distinct x, y, z ∈ A

such that x+ z = 2y.

It is also known that any set A ⊂ {1, 2, · · · , N} with no non-trivial 3 term arith-

metic progressions should have size |A| . (log logN)4

logN ·N [Blo16].

The reduction from matching collinear triples in F2
q to subsets of Z/NZ with

matching tri-sums is simple when q is a prime. In this case we can set N = q.

Three points (x1, y1), (x2, y2), (x3, y3) ∈ F2
q on the cubic curve Y = X3 are collinear iff

x1 + x2 + x3 = 0. So we can get a large subset of PF2
q with matching collinear triples,

from a large subset of Fq ∼= Z/qZ with matching tri-sums. And from Theorem 9.6.5,

we can get such a set of size ≥ q · exp(−O(
√

log q)).

When q is not prime, the additive group of Fq is not cyclic anymore and subsets

of Fq with matching tri-sums are much smaller. For example, if Fq has characteristic

2, which is the main setting of interest for us, the size of the largest subset of Fq

with matching tri-sums is ≤ qc for some absolute constant c < 1 [Kle16]. We will use

some results on elliptic curves which are a special kind of cubic curves to make the

reduction work over any field.

Elliptic curves

We will give a quick introduction to elliptic curves, please refer to [Sil09, MBG+13] for

proofs and formal definitions. Let K be a finite field and K be its algebraic closure. A
257

Weierstrass equation defined over K is homogeneous cubic equation in three variables

of the following form:

F (X, Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3 = 0

where a1, a2, · · · , a6 ∈ K. A point p ∈ PK2 is called a singular point if

∂F

∂X
(p) = ∂F

∂Y
(p) = ∂F

∂Z
(p) = 0.

If there are no such points, we call the equation non-singular, else we call the equa-

tion singular. Since the equation is cubic, it can have at most one singular point.

There is an explicit polynomial function ∆ in variables a1, a2, · · · , a6 and coeffi-

cients in K called the discriminant, such that the Weierstrass equation is singular

iff ∆(a1, · · · , a6) = 0 (see Section III.1 in [Sil09] for the explicit polynomial). A sin-

gular Weierstrass equation5 E with singularity at (X, Y, Z) = (0, 0, 1) can be written

as:

E : Y 2Z + a1XY Z − a3X
2Z = X3.

We associate with E the set of all points in PK2 which satisfy the equation E. There

is exactly one point in E with Z-coordinate equal to 0, namely (0 : 1 : 0), we call

this special point the point at infinity and denote it by O. The set of non-singular

K-rational points of E, denoted by Ens(K) is defined as follows:

Ens(K) = {(x : y : 1)|F (x, y, 1) = 0, x, y ∈ K, (x, y) 6= (0, 0)} ∪ {O}.

Ens(K) is an Abelian group under a certain addition operation ‘+’, with the point at

infinity O as the group identity. Under this operation, three points a, b, c ∈ Ens(K)
5Usually elliptic curves are defined as curves given by non-singular Weierstrass equations. But

for our purpose, it is easier to work with singular Weierstrass equations.

258

satisfy a+ b+ c = O iff a, b, c are collinear in PK2. The following theorem shows that

Ens(K) is isomorphic to K∗ when E is of a special form.

Theorem 9.6.6 (Theorem 8.1 in [MBG+13]). Let E : (Y − αX)(Y − βX)Z = X3

be a singular Weierstrass equation with α, β ∈ K and α 6= β. Then the map φ :

Ens(K)→ K∗ defined as:

φ : O 7→ 1 φ : (x, y, 1) 7→ y − βx
y − αx

is a group isomorphism.

Since K∗ is a cyclic group for any finite field K, Ens(K) is isomorphic to Z/NZ

for N = |K| − 1 when E is a singular Weierstrass equation as in Theorem 9.6.6.

Proof of Lemma 9.6.2

Proof. Let E be a singular Weierstrass equation6 defined over Fq as in Theorem 9.6.6.

By Theorem 9.6.6, Ens(Fq) ∼= Z/NZ where N = q − 1. Recall that a, b, c ∈ Ens(Fq)

satisfy a+ b+ c = 0 in the group iff they are collinear.

Let B ⊂ {1, 2, · · · , N/20} be an explicit subset of size |B| & N · exp(−C
√

logN)

with no 3-term arithmetic progressions, as guaranteed by Theorem 9.6.5. Now define

subsets A1, A2, A3 ⊂ Z/NZ as

A1 = {x : x ∈ B} , A2 =
{⌊
N

3

⌋
+ x : x ∈ B

}
, A3 =

{
N −

⌊
N

3

⌋
− 2x : x ∈ B

}
.

Clearly, A1, A2, A3 are disjoint. Finally we define Ã = A1∪A2∪A3. Now we claim that

the only triples from Ã which sum to zero in Z/NZ are {x, bN/3c+x,N−bN/3c−2x}

for x ∈ B and these triples form a partition of Ã.
6It is not essential to work with singular Weierstrass equations. The proof also works with non-

singular elliptic curves as long the group of K-rational points is cyclic or has a large cyclic subgroup.

259

It is not hard to see that if three distinct elements a, b, c ∈ Ã satisfy a+ b+ c = 0,

then a, b, c should come from 3 different sets A1, A2, A3. So after reordering, we can

assume

a = x, b = bN/3c+ y, c = N − bN/3c − 2z

for some x, y, z ∈ B. Thus a+ b+ c = 0 implies that x+ y = 2z, which implies that

x = y = z since B is free from 3 arithmetic progressions.

Finally let A ⊂ PF2
q be the set of points in Ens(Fq) which map to the set Ã ⊂ Z/NZ

under the isomorphism Ens(Fq) ∼= Z/NZ. Now it is easy to see that A has matching

collinear triples and we have |A| & q · exp(−C
√

log q). �

9.7 Open problems

In this work we made progress towards quantifying the minimal size of finite fields re-

quired for existence of maximally recoverable local reconstruction codes and obtained

both lower and upper bounds. There is a wide array of questions that remain open.

Here we highlight some of them:

• Our lower bound (9.2) implies that even in the regime of constant a and h,

when h ≥ 3, a ≥ 1 and r grows with n there exist no MR codes over fields of

size O(n). It would be of great interest to understand if such codes always exist

when all parameters a, h, and r are held constant and only n grows.

• Our lower bound (9.2) is of the form q = Ω(nrα) where α > 0 in all parameter

ranges except when a = 0 or h = 2 or g = 2 or (g = 3, h = 4, a = 1). When

a = 0 or h = 2, we now know that there are linear field size constructions for

any r. Is this also true when g = 2?

• In the case of fields of characteristic two, can one reduce the field sizes in

Theorems 9.4.4 and 9.5.4 to O(n) and O(n3) to match the case of prime fields?

260

• Our Lemma 9.6.3 provides an equivalence between the parameters of families

of matching collinear triples in the projective plane and maximally recoverable

local reconstruction codes with r = 3, h = 3, and a = 1. We hope that this

reduction will be useful to obtain an ω(n) lower bound for the alphabet size

of MR (n, r = 3, h = 3, a = 1, q)-LRCs, or lead to a construction over fields

of linear size. It is also very interesting to see if techniques similar to those

in Section 9.6.2 can be used to get codes over fields of nearly linear size when

r > 3 or a > 1 or h > 3.

• Finally, it is interesting to see if our lower bound in Theorem 9.1.1 can be

generalized to the setting of non-linear codes. Basic results about LRCs such as

distance vs. redundancy trade-off [GHSY12] have been generalized to non-linear

setting in [SAP+13, FY14].

9.8 Proof of Proposition 9.3.7

We will first focus on the case when a ≤ h− 2dh/ge and later in Proposition 9.8.4 we

will deal with the case a > h− 2dh/ge.

Proposition 9.8.1. Suppose a, g, h be fixed constants such that g ≤ h and a ≤

h− 2dh/ge. Let C be a maximally recoverable (n, r, h, a, q)-LRC where r = n/g is the

size of each local group. Then

q ≥ Ωa,h,g(n1+a/dh/ge).

Proof. Let t1 ≥ t2 ≥ · · · ≥ tg be such that ti = dh/ge or ti = bh/gc and ∑g
i=1 ti = h.

Given a matrix M , we will denote its kernel by ker(M) = {x : Mx = 0} and its

image by Im(M) = {y : ∃x s.t. Mx = y}. We call the subspace spanned by the

rows of M as the row space of M and the subspace spanned by the columns of M as

261

the column space of M and their dimensions are both equal to rank(M). Note that

Im(M) is equal to the column space of M and ker(M) is the orthogonal subspace

of the row space of M . M⊥ is defined as a matrix with independent columns such

that Im(M⊥) = ker(M) and so MM⊥ = 0. Note that M⊥ is not unique, any matrix

whose columns span ker(M) can be used as M⊥, but the specific choice of M⊥ is not

important for the proof.

According to the discussion in Section 9.2 the code C admits a parity check matrix

of the shape 

A1 0 · · · 0

0 A2 · · · 0
...

0 0 · · · Ag

B1 B2 · · · Bg


. (9.16)

Here A1, A2, · · · , Ag are a × r matrices over Fq, B1, B2, · · · , Bg are h × r matrices

over Fq. The rest of the matrix is filled with zeros. Every a× a minor in each matrix

{Ai}i∈[g] has full rank. So for every subset S ⊆ [r] of size |S| = a + ti, the matrix

Ai(S) is an a× (a+ ti) matrix of full rank. Let Ai(S)⊥ be an (a+ ti)× ti matrix of

full rank such that Ai(S)Ai(S)⊥ = 0 (note that Ai(S)⊥ is not unique). Now define

Pi,S = Bi(S)Ai(S)⊥

which is a h× ti matrix.

Define pi,S as the subspace of Fhq spanned by the columns of Pi,S. The MR property

implies that any subset of columns of the parity check matrix (9.16) which can be

obtained by picking a columns in each local group and h arbitrary additional columns

is full rank. We will use this property to make two claims about the subspaces {pi,S} .

262

Claim 9.8.2. For every subsets S1, · · · , Sg ⊆ [r] such that |Si| = a + ti, the spaces

p1,S1 , . . . , pg,Sg together span the entire space i.e. p1,S1 ⊕ p2,S2 ⊕ · · · ⊕ pg,Sg = Fhq .

Proof. Consider the following matrix equation:



A`1(S1) 0 · · · 0

0 A`2(S2) · · · 0
...

0 0 · · · A`h(Sh)

B`1(S1) B`2(S2) · · · B`h(Sh)





A`1(S1)⊥ 0 · · · 0

0 A`2(S2)⊥ · · · 0
...

0 0 · · · A`h(Sh)⊥



=



0 0 · · · 0

0 0 · · · 0
...

0 0 · · · 0

P`1,S1 P`2,S2 · · · P`h,Sh


.

Let us denote the matrices in the above equation by M1,M2,M3 such that the

above equation becomes M1M2 = M3. By MR property, when we erase the coordi-

nates corresponding to S1, · · · , Sg in groups 1, · · · , g respectively, the resulting erasure

pattern is correctable. This implies that the (ag + h) × (ag + h) matrix M1 is full

rank. Also M2 has full column rank because of its block structure. So M3, which

is an (ag + h) × h matrix, should have full column rank. This proves the required

statement since pi,S is the column space of Pi,S. �

The above claim in particular implies that the matrices Pi,S have full rank and

that pi,S is a ti-dimensional subspace of Fhq for every i and S. The following claim

explains for a fixed i, how subspaces {pi,S : |S| = a+ ti} intersect with each other.

Claim 9.8.3. Let i ∈ [g] and S, T be subsets of [r] of size a+ ti such that |S∩T | = `.

1. If ` ≤ a then pi,S ∩ pi,T = φ.
263

2. If ` = a+ `′ for `′ ≥ 1 then dim(pi,S ∩ pi,T) = `′.

Proof. Consider the following matrix equation:

 Ai(S) Ai(T)

Bi(S) Bi(T)


 Ai(S)⊥ 0

0 Ai(T)⊥

 =

 0 0

Pi,S Pi,T

 .

Let us denote the matrices that appear in the above equation to be M1,M2,M3 in

that order so that above equation becomes M1M2 = M3. The matrix M1 is an

(a + h) × 2(a + ti) matrix of rank |S ∪ T | = 2(a + ti) − `. This is because any

a + h columns of

Ai
Bi

 are linearly independent by MR property and |S ∪ T | ≤

2(a+ ti) ≤ a+ h by the assumption that a ≤ h− 2dh/ge. Wlog, we can reorder the

columns of M1 such that the first ` columns of

Ai(S)

Bi(S)

 and

Ai(T)

Bi(T)

 are identical.

M2 is an 2(a + ti) × 2ti matrix of full rank. M3 is an (a + h) × 2ti matrix and

dim(pi,S ∩ pi,T) = 2ti − rank(M3) = dim(ker(M3)). Since ker(M2) = φ,

dim(pi,S ∩ pi,T) = dim(ker(M3)) = dim(Im(M2) ∩ ker(M1)).

Case 1: |S ∩ T | = ` ≤ a

We need to show that Im(M2) ∩ ker(M1) = φ. Suppose there is a non-zero vector

in Im(M2) ∩ ker(M1), say β. We completely understand the kernel of M1, the only

linear dependencies of the columns of M1 occur because of repetitions i.e.

ker(M1) = span{e1 − ea+ti+1, . . . , e` − ea+ti+`}.

So the first half of β is a non-zero vector in Im(Ai(S)⊥) = ker(Ai(S)) which is

supported on the first ` coordinates. But we know that any a columns of Ai(S) are

264

linearly independent and so its kernel cannot contain any non-zero `-sparse vector

when ` ≤ a, leading to a contradiction.

Case 2: |S ∩ T | = ` = a+ `′

We need to show that dim(Im(M2) ∩ ker(M1)) = `′.

• We will first show that dim(Im(M2) ∩ ker(M1)) ≥ `′.

We will exhibit `′ linearly independent vectors in Im(M2)∩ker(M1). The first a

columns of Ai(S) are linearly independent. So the next `′ columns of Ai(S) can

be written as linear combinations of them. This gives `′ linearly independent

vectors in ker(Ai(S)) = Im(Ai(S)⊥), call them α1, . . . , α`′ . Since the first a+ `′

columns of Ai(S) and Ai(T) are the same, the vectors α1, . . . , α`′ are also in

ker(Ai(T)) = Im(Ai(T)⊥). Thus the vectors

 α1

−α1

 , · · · ,
 α`′
−α`′

 are in the

column space of M2. But since α1, · · · , α`′ are supported on the first a + `′

coordinates and the first a+ `′ columns of

Ai(S)

Bi(S)

 and

Ai(T)

Bi(T)

 are identical,

it is easy to see that

 α1

−α1

 , · · · ,
 α`′
−α`′

 are in the kernel of M1. Moreover these

vectors are linearly independent because α1, · · · , α`′ are linearly independent.

This proves that dim(Im(M2) ∩ ker(M1)) ≥ `′.

• We now show that dim(Im(M2) ∩ ker(M1)) ≤ `′.

Suppose dim(Im(M2) ∩ ker(M1)) = `′′ ≥ `′ + 1. So Im(M2) ∩ ker(M1) contains

a non-zero vector, say β, whose first `′′ − 1 coordinates are zero. Since

β ∈ ker(M1) = span{e1 − ea+ti+1, . . . , e` − ea+ti+`},

and the first `′′ − 1 coordinates of β are zero,

β ∈ span{e`′′ − ea+ti+`′′ , . . . , e` − ea+ti+`}.
265

Since β ∈ Im(M2), the first half of β is a non-zero vector in Im(Ai(S)⊥) sup-

ported on ` − (`′′ − 1) ≤ a coordinates. This is a contradiction because any a

columns of Ai(S) are linearly independent and thus Im(Ai(S)⊥) = ker(Ai(S))

cannot contain a non-zero a-sparse vector. �

Now we will show that if q = oa,g,h(n1+a/dh/ge) then a random (h− 1)-dimensional

subspace of Fhq will contain p1,S1 , p2,S2 , . . . , pg,Sg for some subsets S1, . . . , Sg ⊂ [r]

with |Si| = a + ti with high probability, which contradicts Claim 9.8.2. Let f be a

uniformly random vector in Fhq and let F = {x ∈ F h
q : 〈x, f〉 = 0} i.e. the set of vectors

orthogonal to f . If f 6= 0, then F is a (h− 1)-dimensional subspace and if f = 0 then

F = Fhq . We want to calculate the probability that F contains p1,S1 , p2,S2 , . . . , pg,Sg

for some subsets S1, . . . , Sg conditioned on F not being the entire space i.e. f 6= 0.

Let’s ignore the conditioning for now and estimate the required probability.

Fix some i ∈ [g]. Let Zi be the number of subspaces among {pi,S : S ∈
(

[r]
a+ti

)
}

which are contained in F . We have Pr[Zi > 0] ≥ E[Zi]2/E[Z2
i]. The probability that

F contains a fixed pi,S which is a ti-dimensional subspace is 1/qti . Therefore,

E[Zi] =
∑

S⊂[r],|S|=a+ti

Pr[pi,S ∈ F] =

(
r

a+ti

)
qti

.

E[Z2
i] =

∑
S,T∈(r

a+ti)
Pr[pi,S, pi,T ∈ F]

=
a∑
`=0

∑
S,T :|S∩T |=`

Pr[pi,S, pi,T ∈ F] +
ti∑
`′=1

∑
S,T :|S∩T |=a+`′

Pr[pi,S, pi,T ∈ F].

By Claim 9.8.3, if |S ∩ T | ≤ a, then pi,S ∩ pi,T = φ and so

Pr[pi,S, pi,T ∈ F] = 1
q2ti

.

266

And if |S ∩ T | = a+ `′ then dim(pi,S ∩ pi,T) = `′ and so

Pr[pi,S, pi,T ∈ F] = 1
q2ti−`′

.

Therefore,

E[Z2
i] =

a∑
`=0

(
r

a+ ti

)(
r − (a+ ti)
a+ ti − `

)(
a+ ti
`

)
1
q2ti

+
ti∑
`′=0

(
r

a+ ti

)(
r − (a+ ti)
ti − `′

)(
a+ ti
a+ `′

)
1

q2ti−`′
.

Therefore,

E[Z2
i]

E[Zi]2
= 1 +

ti∑
`′=1

(c`′ + oa,g,h(1)) q`
′

na+`′ + oa,g,h(1)

where c`′ are constants depending only on a, g, h and indepedent of n, q.

When q = oa,g,h(n1+a/ti), which is true since ti ≤ dh/ge, E[Z2
i]/E[Zi]2 = 1 + o(1)

and so Pr[Zi > 0] = 1 − o(1). By union bound, Pr[∀i ∈ [g], Zi > 0] = 1 − o(1).

Note that q should grow with n to have enough subspaces for Claim 9.8.3 to hold.

Therefore Pr[f = 0] = 1/qh = o(1). So

Pr
[
∀i ∈ [g], Zi > 0

∣∣∣f 6= 0
]
≥ Pr[∀i ∈ [g], Zi > 0]− Pr[f = 0] = 1− o(1)

which implies the required contradiction. �

Using the suggestion of Parikshit Gopalan [Gop17], we can generalize Proposi-

tion 9.8.1 to the case when a > h − 2dh/ge. In this case, we modify the proof of

Proposition 9.8.1 where we only consider sets Si that have size a + ti but are con-

strained to contain the set {1, 2, . . . , a+ 2ti−h}, as this ensures that pairwise unions

still have size at most a+h. Clearly, the total number of such sets is
(
r−a+h−2ti

h−ti

)
. The

rest of the proof remains the same and yields the following:
267

Proposition 9.8.4. Assume a, h, g are fixed constants such that a ≥ h − 2dh/ge

and h ≥ g then any maximally recoverable (n, r, h, a, q)-local reconstruction code with

g = n/r local groups must have

q ≥ Ωa,h,g(nh/dh/ge−1). (9.17)

Proof of Proposition 9.3.7. Follows immediately from Propositions 9.8.1 and 9.8.4.

�

9.9 Determinantal identities

For our constructions, we will need some determinantal identities which we prove here.

We need the following expansion of determinant of a column partitioned matrix.

Lemma 9.9.1. For i ∈ [`], let Fi be an h× ti matrix with ∑`
i=1 ti = h. Then,

det[F1|F2| · · · |F`] =
∑

S1t···tS`=[h],|Si|=ti

sgn(S1, · · · , S`)
∏
i∈[`]

detF (Si)
i

where S1t· · ·tS` ranges over partitions of [h] such that |Si| = ti. Here sgn(S1, · · · , S`)

is the sign of the permutation taking (1, 2, · · · , h) to (S̃1, S̃2, · · · , S̃`) where S̃i is the

tuple formed by ordering the elements of Si in increasing order.

Proof. Given distinct integers a1, · · · , an, define sgn(a1, a2, · · · , an) := (−1)t where t

is number of transpositions needed to sort the elements a1, a2, · · · , an in increasing

order. Thus for a permutation π ∈ Sh, sgn(π) = sgn(π(1), π(2), · · · , π(h)). Let

F = [F1|F2| · · · |F`] and for i ∈ [`], let Ti = {ti−1 + 1, · · · , ti} where t0 = 0. We can

268

expand det(F) as:

det(F) =
∑
π∈Sh

sgn(π)
h∏
i=1

Fπ(i)i

=
∑

S1t···tS`=[h],|Si|=ti

∑
π: π(Ti)=Si

sgn(π)
h∏
i=1

Fπ(i)i

Note that if π(Ti) = Si, then for i ∈ [`],

sgn(π) = sgn(S̃1, · · · , S̃`)
∏̀
i=1

sgn(π(ti−1 + 1), · · · , π(ti))

because we can sort (π(1), · · · , π(h)) first within each group to get (S̃1, · · · , S̃`) and

then sort it to get (1, 2, · · · , h). Therefore,

∑
π: π(Ti)=Si

sgn(π)
h∏
i=1

Fπ(i)i

=
∑

σ1:T1→S1,..., σ`:T`→S`
sgn(S̃1, · · · , S̃`)

∏̀
i=1

sgn(σi(ti−1 + 1), · · · , σi(ti))
ti∏

j=ti−1+1
Fσi(j)j


(where the summation is over all bijections σi : Ti → Si)

= sgn(S̃1, · · · , S̃`)
∏̀
i=1

 ∑
σi:Ti→Si

sgn(σi(ti−1 + 1), · · · , σi(ti))
ti∏

j=ti−1+1
Fσi(j)j


= sgn(S̃1, · · · , S̃`)

∏̀
i=1

detF (Si)
i . �

269

Lemma 9.9.2. For i ∈ [`], let Ci be an a× (a+ ti) matrix and Di be an h× (a+ ti)

matrix for some t1 + t2 + · · ·+ t` = h where ti ≥ 1. Then,

det



C1 0 · · · 0

0 C2 · · · 0
...

0 0 · · · C`

D1 D2 · · · D`



= (−1)a
∑`

i=1 ti(`−i)
∑

S1t···tS`=[h]
|Si|=ti

sgn(S1, · · · , S`)
∏
i∈[`]

det

 Ci

D
(Si)
i



where S1t· · ·tS` ranges over partitions of [h] such that |Si| = ti and sgn(S1, · · · , S`)

is defined as in Lemma 9.9.1.

Proof. Let

F = [F1|F2| · · · |F`] =



C1 0 · · · 0

0 C2 · · · 0
...

0 0 · · · C`

D1 D2 · · · D`


.

Let [p, q] be the integers between p and q, i.e., [p, q] = {i : p ≤ i ≤ q}. By

Lemma 9.9.1,

detF = det[F1|F2| · · · |F`] =
∑

T1t···tT`=[a`+h],|Ti|=a+ti

sgn(T1, · · · , T`)
∏
i∈[`]

detF (Ti)
i

Note that the only terms which survive correspond to partitions T1 t T2 t · · · t T` of

rows of F such that for every i ∈ [`], Ti contains the rows of Ci (i.e. [(i−1)a+ 1, ia]).

270

In the other terms, there exists some i ∈ [`] such that F (Ti)
i contains a zero row and

thus detF (Ti)
i = 0. Such partitions are given by Ti = [(i − 1)a + 1, ia] ∪ Si where

S1 tS2 · · · tS` is some partition of rows of [D1|D2| · · · |D`] such that |Si| = ti. So the

expansion for detF can be written as:

detF

=
∑

S1t···tS`=[a`+1,a`+h]
|Si|=ti

sgn([1, a] ∪ S1, · · · , [(`− 1)a+ 1, `a] ∪ S`)
∏
i∈[`]

detF ([(i−1)a,ia]∪Si)
i

= (−1)a(
∑`

i=1 ti(`−i))
∑

S1t···tS`=[a`+1,a`+h]
|Si|=ti

sgn([1, `a], S1, S2, · · ·S`)
∏
i∈[`]

detF ([(i−1)a,ia]∪Si)
i

= (−1)a(
∑`

i=1 ti(`−i))
∑

S1t···tS`=[h],|Si|=ti

sgn(S1, S2, · · ·S`)
∏
i∈[`]

det

 Ci

D
(Si)
i

 . �

We will now prove Lemma 9.4.1, which was used in our constructions in Sections 9.4

and 9.5.

Proof of Lemma 9.4.1. After applying Lemma 9.9.2, we just need to note that

∑
S1t···tSh=[h],|Si|=1

sgn(S1, · · · , S`)
∏
i∈[`]

det

 Ci

D
(Si)
i

 =
∑
π

sgn(π)
∏
i∈[h]

det

 Ci

D
(π(i))
i



where the last summation is over all permutations π of h elements which is the exactly

the required determinant. �

9.10 Proof of Lemma 9.4.3

The goal of the section is to prove Lemma 9.4.3 which is restated here for convenience.

271

Lemma 9.10.1 (Restatement of Lemma 9.4.3). Let r, n be some positive integers

with r ≤ n. Then there exists a finite field Fq with q = O(n) such that the multiplica-

tive group F∗q contains a subgroup of size at least r and with at least n/r cosets. If

additionally we require that the field has characteristic two, then such a field exists

with q = n · exp(O(
√

log n)).

We will need some estimates from analytic number theory, we will setup some notation

first.

π(x;m, a) : number of primes p ≤ x such that p ≡ a mod m

π(x, y;m, a) = π(y;m, a)− π(x;m, a)

Li(x) =
∫ x

2

1
ln tdt

(a,m) : greatest common divisor of a and m

φ(m) : number of integers 1 ≤ a ≤ m s.t. (a,m) = 1 (Euler’s totient function)

By the prime number theorem, the number of primes ≤ x is approximately Li(x) =

Θ(x/ log x). So if the primes are equidistributed among different congruence classes

of m with no obvious divisors (i.e. a mod m where (a,m) = 1), then we expect to

see approximately Li(x)/φ(m) primes in each such congruence class. The following

theorem gives an upper bound on the error term in this approximation averaged over

m <
√
x(log x)A.

Theorem 9.10.2 (Theorem from [BFI86] (Page 250)). Let a 6= 0, A ≥ 0 be some

fixed constants and x ≥ 3. We then have

∑
(m,a)=1; m<

√
x(log x)A

∣∣∣∣∣π(x;m, a)− Li(x)
φ(m)

∣∣∣∣∣ .a,A x(log log x)B
(log x)3

where B is an absolute constant.

272

Applying the above theorem with a = 1, A = 0 for x and 2x, and using triangle

inequality, we get the following corollary.

Corollary 9.10.3. For x large enough,

∑
m<
√
x

∣∣∣∣∣π(x, 2x;m, 1)− (Li(2x)− Li(x))
φ(m)

∣∣∣∣∣ . x
(log log x)B

(log x)3

where B is an absolute constant.

Lemma 9.10.4. Let a ≤ b be some positive integers. Then there exists A ≥ a,B ≥ b

such that AB + 1 is a prime and AB = O(ab).

Proof. If there exists some A such that a ≤ A ≤ 2a and there is a prime p between

4ab+1 and 8ab which is congruent to 1 mod A, then we can take B = (p−1)/A ≥ b.

Suppose this is not true, we will arrive at a contradiction. For every a ≤ m ≤ 2a, we

have π(4ab, 8ab;m, 1) = 0. Applying corollary 9.10.3 with x = 4ab, we get

ab
(log log ab)B

(log ab)3 &
∑

m<2
√
ab

∣∣∣∣∣π(4ab, 8ab;m, 1)− (Li(8ab)− Li(4ab))
φ(m)

∣∣∣∣∣
≥

∑
a≤m<2a

∣∣∣∣∣π(4ab, 8ab;m, 1)− (Li(8ab)− Li(4ab))
φ(m)

∣∣∣∣∣
=

∑
a≤m<2a

(Li(8ab)− Li(4ab))
φ(m)

≥ a
Li(8ab)− Li(4ab)

2a &
ab

log(ab)

which is a contradiction when ab is large enough. �

In practice, it is desirable to work with fields of characteristic two, the following

lemma gives us such fields.

Lemma 9.10.5. Let a, b be some positive integers and let n = ab. Then there exists

A ≥ a, B ≥ b such that q = AB + 1 is a power of two and q = n · exp(O
√

log n).

273

Proof. Let m be a positive integer to be chosen later. Let ` be an integer such that

2`(2m−1) ≥ Cn+ 1 > 2(`−1)(2m−1)

where C ≥ 1 is some sufficiently large constant to be chosen later and let x = 2`, q =

x2m . We will now show that for any a ≤ n, we can factor q− 1 as A ·B where A ≥ a

and B ≥ n/a = b. We can factor q − 1 = x2m − 1 as:

x2m − 1 = (x− 1)
∏
i∈[m]

(1 + x2i−1).

We will rearrange these factors to get the desired factorization of q − 1. Let 0 ≤

α ≤ 2m − 1 be such that xα−1 < a ≤ xα. Expand α into its binary expansion as

α = ∑
i∈S 2i where S ⊂ {0, 1, · · · ,m − 1}. Define A = ∏

i∈S(1 + x2i) and define

B = (x2m − 1)/A. Clearly A ≥ xα ≥ a. We can lower bound B as follows:

B = (x2m − 1)∏
i∈S(1 + x2i) =

∏
i∈S

(1 + x−2i)−1 · (x2m − 1)∏
i∈S x2i

≥ exp(−
∑
j≥0

x−2j)(x2m − 1)
xα

≥ exp(−
∑
j≥0

2−2j)(x2m − 1)
xa

≥ exp(−
∑
j≥0

2−2j)(x2m−1 − 1)
a

≥ exp(−
∑
j≥0

2−2j)Cn
a
≥ n

a

when C = exp(∑j≥0 2−2j). Now we need to bound q = x2m as a function of n.

q = 2`2m = 2(`−1)(2m−1) · 2` · 22m−1

≤ (Cn+ 1) · 2` · 22m−1

. n1+1/(2m−1) · 22m−1

. n exp(O(
√

log n))

if we choose m such that (2m − 1) = Θ(
√

log n).

274

�

We are now ready to prove Lemma 9.4.3.

Proof of Lemma 9.4.3. By Lemma 9.10.4, there exists A ≥ r and B ≥ n/r such that

q = AB + 1 is prime and q = O(n). Since F∗q is a cyclic group of size q − 1 and A

divides q − 1, there exists a subgroup of F∗q of size A ≥ r with B ≥ n/r cosets. To

get a finite field of characteristic two, we use Lemma 9.10.5 instead. �

275

Bibliography

[Aar18] Scott Aaronson. PDQP/qpoly = ALL. arXiv preprint
arXiv:1805.08577, 2018.

[AEL95] Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes
with nearly optimal recovery. In proceedings of the 36th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 512–
519. IEEE Computer Society, 1995.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and
Mario Szegedy. Proof verification and the hardness of approximation
problems. Journal of the ACM, 45(3):501–555, 1998.

[ALRW17] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Wain-
garten. Optimal hashing-based time-space trade-offs for approximate
near neighbors. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 47–66. Society for In-
dustrial and Applied Mathematics, 2017.

[Amb97] Andris Ambainis. Upper bound on communication complexity of private
information retrieval. In ICALP, pages 401–407, 1997.

[AR94] Noga Alon and Yuval Roichman. Random Cayley graphs and ex-
panders. Random Structures & Algorithms, 5, 1994.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A
new characterization of NP. Journal of the ACM, 45(1):70–122, 1998.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its
applications. Combinatorica, 23(3):365–426, 2003.

[Bal12] Simeon Ball. On sets of vectors of a finite vector space in which every
subset of basis size is a basis. Journal of European Mathematical Society,
14:733–748, 2012.

[BARDW08] Avraham Ben-Aroya, Oded Regev, and Ronald De Wolf. A hyper-
contractive inequality for matrix-valued functions with applications to
quantum computing and ldcs. In Foundations of Computer Science,
2008. FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 477–
486. IEEE, 2008.

276

[BB15] Arnab Bhattacharyya and Abhishek Bhowmick. Using higher-order
Fourier analysis over general fields. Preprint arXiv:1505.00619, 2015.

[BDG17] Jop Briët, Zeev Dvir, and Sivakanth Gopi. Outlaw distributions and
locally decodable codes. In 8th Innovations in Theoretical Computer
Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA,
USA, pages 20:1–20:19, 2017.

[BDL13] A. Bhowmick, Z. Dvir, and S. Lovett. New Bounds for Matching Vec-
tor Families. In Proceedings of the 45th Annual ACM Symposium on
Symposium on Theory of Computing, STOC ’13, pages 823–832, 2013.

[BDSS11] Arnab Bhattacharyya, Zeev Dvir, Amir Shpilka, and Shubhangi Saraf.
Tight lower bounds for 2-query lccs over finite fields. In Foundations
of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on,
pages 638–647. IEEE, 2011.

[BDSS16] Arnab Bhattacharyya, Zeev Dvir, Shubhangi Saraf, and Amir Shpilka.
Tight lower bounds for linear 2-query LCCs over finite fields. Combi-
natorica, 36(1):1–36, 2016.

[BDYW11] Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank
bounds for design matrices with applications to combinatorial geometry
and locally correctable codes. In Proceedings of the forty-third annual
ACM symposium on Theory of computing, pages 519–528. ACM, 2011.

[Beh46] Felix A Behrend. On sets of integers which contain no three terms
in arithmetical progression. Proceedings of the National Academy of
Sciences, 32(12):331–332, 1946.

[BF90] Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle
queries. In Annual Symposium on Theoretical Aspects of Computer
Science, pages 37–48. Springer, 1990.

[BFI86] Enrico Bombieri, John B Friedlander, and Henryk Iwaniec. Primes in
arithmetic progressions to large moduli. Acta Mathematica, 156(1):203–
251, 1986.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy.
Checking computations in polylogarithmic time. In Proceedings of the
23rd Annual ACM Symposium on Theory of Computing (STOC), pages
21–31. ACM Press, 1991.

[BG17a] Arnab Bhattacharyya and Sivakanth Gopi. Lower bounds for constant
query affine-invariant LCCs and LTCs. TOCT, 9(2):7:1–7:17, 2017.
Preliminary version appeared in CCC’16.

277

[BG17b] Jop Briët and Sivakanth Gopi. Gaussian width bounds with ap-
plications to arithmetic progressions in random settings. CoRR,
abs/1711.05624, 2017. Available at http://arxiv.org/abs/1711.
05624.

[BG18] Jop Briët and Sivakanth Gopi. Personal communication, 2018.

[BGLZ17] Bhaswar Bhattacharya, Shirshendu Ganguly, Eyal Lubetzky, and Yufei
Zhao. Upper tails and independence polynomials in random graphs.
Advances in Mathematics, 319:313–347, 2017.

[BGSZ18] Bhaswar Bhattacharya, Shirshendu Ganguly, Xuancheng Shao, and
Yufei Zhao. Upper tails for arithmetic progressions in a random set.
International Mathematics Research Notices, 2018. To appear. Avail-
able at arXiv preprint: 1605.02994.

[BGT17] Arnab Bhattacharyya, Sivakanth Gopi, and Avishay Tal. Lower bounds
for 2-query LCCs over large alphabet. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA,
pages 30:1–30:20, 2017.

[BHH13] Mario Blaum, James Lee Hafner, and Steven Hetzler. Partial-MDS
codes and their application to RAID type of architectures. IEEE Trans-
actions on Information Theory, 59(7):4510–4519, 2013.

[BI01] Amos Beimel and Yuval Ishai. Information-theoretic private informa-
tion retrieval: A unified construction. In ICALP, pages 912–926, 2001.

[BIKR02] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-François Ray-
mond. Breaking the o(n1/(2k−1)) barrier for information-theoretic pri-
vate information retrieval. In FOCS, pages 261–270, 2002.

[BIW07] Omer Barkol, Yuval Ishai, and Enav Weinreb. On locally decodable
codes, self-correctable codes, and t-private PIR. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, pages 311–325. Springer, 2007.

[BK95] Manuel Blum and Sampath Kannan. Designing programs that check
their work. Journal of the ACM, 42(1):269–291, 1995.

[BL96] Vitaly Bergelson and Alexander Leibman. Polynomial extensions of
van der Waerden’s and SzemerédiÃćÂĂÂŹs theorems. Journal of the
American Mathematical Society, 9(3):725–753, 1996.

[BL15] Abhishek Bhowmick and Shachar Lovett. Bias vs structure of poly-
nomials in large fields, and applications in effective algebraic geometry
and coding theory. Preprint arXiv:1506.02047, 2015.

278

http://arxiv.org/abs/1711.05624
http://arxiv.org/abs/1711.05624

[BL18] Abhishek Bhowmick and Shachar Lovett. The list decoding radius for
reed muller codes over small fields. IEEE Transactions on Information
Theory, 2018.

[Bla13] Mario Blaum. Construction of PMDS and SD codes extending raid 5.
arXiv preprint arXiv:1305.0032, 2013.

[Blo16] Thomas F Bloom. A quantitative improvement for Roth’s theorem on
arithmetic progressions. Journal of the London Mathematical Society,
page jdw010, 2016.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-
testing/correcting with applications to numerical problems. Journal
of Computer and System Sciences, 47(3):549–595, 1993.

[BNR12] Jop Briët, Assaf Naor, and Oded Regev. Locally decodable codes and
the failure of cotype for projective tensor products. Electronic Re-
search Announcements in Mathematical Sciences (ERA-MS), 19:120–
130, 2012.

[BPSY16] Mario Blaum, James Plank, Moshe Schwartz, and Eitan Yaakobi. Con-
struction of partial MDS and sector-disk codes with two global parity
symbols. IEEE Transactions on Information Theory, 62(5):2673–2681,
2016.

[BR16] Jop Briët and Shravas Rao. Arithmetic expanders and deviation bounds
for random tensors. arXiv preprint arXiv:1610.03428, 2016.

[Bri16] Jop Briët. On embeddings of `k1 from locally decodable codes. arXiv
preprint: arXiv:1611.06385, 2016.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query
complexity. SIAM Journal on Computing, 38(2):551–607, 2008.

[BSGK+10] Eli Ben-Sasson, Venkatesan Guruswami, Tali Kaufman, Madhu Su-
dan, and Michael Viderman. Locally testable codes require redundant
testers. SIAM J. Comput, 39(7):3230–3247, 2010.

[BSRZS12] Eli Ben-Sasson, Noga Ron-Zewi, and Madhu Sudan. Sparse affine-
invariant linear codes are locally testable. In Foundations of Computer
Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 561–
570. IEEE, 2012.

[BSS06] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and
products of codes. Random Structures & Algorithms, 28(4):387–402,
2006.

279

[BSS11] Eli Ben-Sasson and Madhu Sudan. Limits on the rate of locally testable
affine-invariant codes. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques, pages 412–423.
Springer, 2011.

[CC18] L. Cao and Z. Chen. Partitions of the polytope of Doubly Substochastic
Matrices. ArXiv e-prints, March 2018.

[CD16] Sourav Chatterjee and Amir Dembo. Nonlinear large deviations. Ad-
vances in Mathematics, 299:396–450, 2016.

[CFL+13] Yeow Meng Chee, Tao Feng, San Ling, Huaxiong Wang, and Liang Feng
Zhang. Query-efficient locally decodable codes of subexponential length.
Computational Complexity, 22(1):159–189, 2013.

[CGKS98] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan.
Private information retrieval. Journal of the ACM, 45(6):965–981, 1998.

[CHL07] Minghua Chen, Cheng Huang, and Jin Li. On maximally recoverable
property for multi-protection group codes. In IEEE International Sym-
posium on Information Theory (ISIT), pages 486–490, 2007.

[Chr11] Michael Christ. On random multilinear operator inequalities. arXiv
preprint: 1108.5655, 2011.

[CK17] Gokhan Calis and Ozan Koyluoglu. A general construction fo PMDS
codes. IEEE Communications Letters, 21(3):452–455, 2017.

[COOW12] Amin Coja-Oghlan, Mikael Onsjö, and Osamu Watanabe. Propaga-
tion connectivity of random hypergraphs. The Electronic Journal of
Combinatorics, 19(1):P17, 2012.

[CT12] Thomas M Cover and Joy A Thomas. Elements of information theory.
John Wiley & Sons, 2012.

[CT14] Gil Cohen and Avishay Tal. Two structural results for low degree poly-
nomials and applications. arXiv preprint arXiv:1404.0654, 2014.

[CZ17] David Conlon and Yufei Zhao. Quasirandom Cayley graphs. Discrete
Analysis, 6, 2017. Available at arXiv:1603.03025 [math.CO].

[DG16] Zeev Dvir and Sivakanth Gopi. 2-Server PIR with subpolynomial com-
munication. J. ACM, 63(4):39:1–39:15, September 2016. Preliminary
version appeared in STOC 2015.

[DGW+10] Alexandros G. Dimakis, Brighten Godfrey, Yunnan Wu, Martin J.
Wainwright, and Kannan Ramchandran. Network coding for dis-
tributed storage systems. IEEE Transactions on Information Theory,
56(9):4539–4551, 2010.

280

[DGY10] Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector
codes. In FOCS, pages 705–714, 2010.

[DH13] Z. Dvir and G. Hu. Matching-vector families and LDCs over large
modulo. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques (RANDOM-APPROX), volume
8096, pages 513–526. Springer Berlin Heidelberg, 2013.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the
ACM, 54(3):12, 2007.

[DJK+02] Amit Deshpande, Rahul Jain, Telikepalli Kavitha, Satyanarayana V
Lokam, and Jaikumar Radhakrishnan. Better lower bounds for locally
decodable codes. In Computational Complexity, 2002. Proceedings. 17th
IEEE Annual Conference on, pages 184–193. IEEE, 2002.

[DS07] Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries
and polynomial identity testing for depth 3 circuits. SIAM Journal on
Computing, 36(5):1404–1434, 2007.

[DSW14a] Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Breaking the quadratic
barrier for 3-LCC’s over the reals. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, pages 784–793. ACM, 2014.

[DSW14b] Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Improved rank bounds
for design matrices and a new proof of Kelly’s theorem. In Forum of
Mathematics, Sigma, volume 2, page e4. Cambridge Univ Press, 2014.

[Dud78] Richard M Dudley. Central limit theorems for empirical measures. The
Annals of Probability, pages 899–929, 1978.

[Dvi11] Zeev Dvir. On matrix rigidity and locally self-correctable codes. com-
putational complexity, 20(2):367–388, 2011.

[Efr09] Klim Efremenko. 3-query locally decodable codes of subexponential
length. In STOC, pages 39–44, 2009.

[Eld16] Ronen Eldan. Gaussian-width gradient complexity, reverse log-Sobolev
inequalities and nonlinear large deviations. arXiv preprint: 1612.04346,
2016.

[Elk11] Michael Elkin. An improved construction of progression-free sets. Israel
journal of mathematics, 184(1):93–128, 2011.

[FLW12] Nikos Frantzikinakis, Emmanuel Lesigne, and Mate Wierdl. Random
sequences and pointwise convergence of multiple ergodic averages. In-
diana University Mathematics Journal, pages 585–617, 2012.

281

[FLW16a] Nikos Frantzikinakis, Emmanuel Lesigne, and Mate Wierdl. Ran-
dom differences in szemerédi’s theorem and related results. Journal
d’Analyse Mathématique, 130(1):91–133, 2016.

[FLW16b] Nikos Frantzikinakis, Emmanuel Lesigne, and Mate Wierdl. Ran-
dom differences in Szemerédi’s theorem and related results. Journal
d’Analyse Mathématique, 130(1):91–133, 2016.

[Fox17] Jacob Fox. Personal communication, 2017.

[FS95] Katalin Friedl and Madhu Sudan. Some improvements to total degree
tests. In proceedings of the 3rd Israel Symposium on the Theory of Com-
puting and Systems (ISTCS), pages 190–198. IEEE Computer Society,
1995.

[FY14] Michael Forbes and Sergey Yekhanin. On the locality of codeword sym-
bols in non-linear codes. Discrete mathematics, 324:78–84, 2014.

[Gas04] William I. Gasarch. A survey on private information retrieval (column:
Computational complexity). Bulletin of the EATCS, 82:72–107, 2004.

[GGY17] Sivakanth Gopi, Venkatesan Guruswami, and Sergey Yekhanin.
On maximally recoverable local reconstruction codes. CoRR,
abs/1710.10322, 2017. Available at http://arxiv.org/abs/1710.
10322.

[GHJY14] Parikshit Gopalan, Cheng Huang, Bob Jenkins, and Sergey Yekhanin.
Explicit maximally recoverable codes with locality. IEEE Transactions
on Information Theory, 60(9):5245–5256, 2014.

[GHK+17] Parikshit Gopalan, Guangda Hu, Swastik Kopparty, Shubhangi Saraf,
Carol Wang, and Sergey Yekhanin. Maximally recoverable codes for
grid-like topologies. In 28th Annual Symposium on Discrete Algorithms
(SODA), pages 2092–2108, 2017.

[GHSY12] Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey
Yekhanin. On the locality of codeword symbols. IEEE Trans. Informa-
tion Theory, 58(11):6925–6934, 2012.

[GI04] Venkatesan Guruswami and Piotr Indyk. Efficiently decodable codes
meeting gilbert-varshamov bound for low rates. In J. Ian Munro, ed-
itor, Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, Jan-
uary 11-14, 2004, pages 756–757. SIAM, 2004.

[Gil52] Edgar N. Gilbert. A comparision of signalling alphabets. Bell System
Technical Journal, 31:504–522, 1952.

282

http://arxiv.org/abs/1710.10322
http://arxiv.org/abs/1710.10322

[GKdO+17] Sivakanth Gopi, Swastik Kopparty, Rafael Mendes de Oliveira, Noga
Ron-Zewi, and Shubhangi Saraf. Locally testable and locally correctable
codes approaching the gilbert-varshamov bound. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
2073–2091, 2017.

[GKS13] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant
codes from lifting. In Proceedings of the 4th conference on Innovations
in Theoretical Computer Science, pages 529–540. ACM, 2013.

[GKST06] Oded Goldreich, Howard Karloff, Leonard J Schulman, and Luca Tre-
visan. Lower bounds for linear locally decodable codes and private
information retrieval. Computational Complexity, 15(3):263–296, 2006.

[Gop17] Parikshit Gopalan. Personal communication, 2017.

[Gow01] William T Gowers. A new proof of szemerédi’s theorem. Geometric &
Functional Analysis GAFA, 11(3):465–588, 2001.

[GR10] Venkatesan Guruswami and Atri Rudra. The existence of concatenated
codes list-decodable up to the hamming bound. IEEE Trans. Informa-
tion Theory, 56(10):5195–5206, 2010.

[Gre06] Ben Green. Montreal lecture notes on quadratic Fourier analysis.
Preprint arXiv:math/0604089, 2006.

[Gro99] Vince Grolmusz. Superpolynomial size set-systems with restricted in-
tersections mod 6 and explicit ramsey graphs. Combinatorica, 20:2000,
1999.

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for poly-
nomials. Information Processing Letters, 43(4):169–174, 28 September
1992.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-
solomon and algebraic-geometry codes. IEEE Trans. Information The-
ory, 45(6):1757–1767, 1999.

[GS00] Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for
certain concatenated codes. In Proceedings of the thirty-second annual
ACM symposium on Theory of computing, pages 181–190. ACM, 2000.

[GS01] Venkatesan Guruswami and Madhu Sudan. Extensions to the Johnson
bound, 2001.

[GS02] Venkatesan Guruswami and Madhu Sudan. Decoding concatenated
codes using soft information. In IEEE Conference on Computational
Complexity, pages 148–157. IEEE Computer Society, 2002.

283

[GS06a] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of
almost-linear length. Journal of the ACM, 53(4):558 – 655, July 2006.

[GS06b] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs
of almost linear length. Journal of ACM, 53(4):558–655, 2006.

[GSVW14] Venkatesan Guruswami, Madhu Sudan, Ameya Velingker, and Carol
Wang. Limitations on testable affine-invariant codes in the high-rate
regime. In Proceedings of the twenty-sixth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 1312–1325. SIAM, 2014.

[Guo13] Alan Xinyu Guo. Some closure features of locally testable affine-
invariant properties. Master’s thesis, Massachusetts Institute of Tech-
nology, 2013.

[Gur06] Venkatesan Guruswami. Algorithmic results in list decoding. Founda-
tions and Trends in Theoretical Computer Science, 2(2), 2006.

[GW16] Venkatesan Guruswami and Mary Wootters. Repairing Reed-Solomon
codes. In 48th ACM Symposium on Theory of Computing (STOC),
pages 216–226, 2016.

[GYBS17] Ryan Gabrys, Eitan Yaakobi, Mario Blaum, and Paul Siegel. Construc-
tion of partial MDS codes over small finite fields. In 2017 IEEE Inter-
national Symposium on Information Theory (ISIT), pages 1–5, 2017.

[HCL07] Cheng Huang, Minghua Chen, and Jin Li. Pyramid codes: flexible
schemes to trade space for access efficiency in reliable data storage sys-
tems. In 6th IEEE International Symposium on Network Computing
and Applications (NCA 2007), pages 79–86, 2007.

[HH11] Barry Hurley and Ted Hurley. Group ring cryptography. CoRR,
abs/1104.1724, 2011.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs
and their applications. Bull. Amer. Math. Soc., 43:439–561, 2006.

[HOW15] Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local cor-
rectability of expander codes. Information and Computation, 243:178–
190, 2015.

[HSX+12] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder,
Parikshit Gopalan, Jin Li, and Sergey Yekhanin. Erasure coding in Win-
dows Azure Storage. In USENIX Annual Technical Conference (ATC),
pages 15–26, 2012.

[HY16] Guangda Hu and Sergey Yekhanin. New constructions of SD and MR
codes over small finite fields. In 2016 IEEE International Symposium
on Information Theory (ISIT), pages 1591–1595, 2016.

284

[IK04] Yuval Ishai and Eyal Kushilevitz. On the hardness of information-
theoretic multiparty computation. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages 439–455.
Springer, 2004.

[IS10] Toshiya Itoh and Yasuhiro Suzuki. Improved constructions for query-
efficient locally decodable codes of subexponential length. IEICE Trans-
actions, 93-D(2):263–270, 2010.

[Jai06] Rahul Jain. Towards a classical proof of exponential lower bound for
2-probe smooth codes. arXiv:cs/0607042, 2006.

[KKS13] Delaram Kahrobaei, Charalambos Koupparis, and Vladimir Shpil-
rain. Public key exchange using matrices over group rings. Groups-
Complexity-Cryptology, 5(1):97–115, 2013.

[Kle16] Robert Kleinberg. A nearly tight upper bound on tri-colored sum-free
sets in characteristic 2. arXiv preprint arXiv:1605.08416, 2016.

[KLP67] T. Kasami, S. Lin, and W.W. Peterson. Some results on cyclic codes
which are invariant under the affine group and their applications. In-
form. and Comput., 11(5–6):475–496, 1967.

[KLR17] Daniel Kane, Shachar Lovett, and Sankeerth Rao. Labeling the com-
plete bipartite graph with no zero cycles. In 58th IEEE Symposium on
Foundations of Computer Science (FOCS), 2017.

[KMRS15] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf.
High-rate locally-correctable and locally-testable codes with sub-
polynomial query complexity. Electronic Colloquium on Computational
Complexity (ECCC), 2015.

[KMRS17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf.
High-rate locally correctable and locally testable codes with sub-
polynomial query complexity. J. ACM, 64(2):11:1–11:42, 2017.

[KS07] Tali Kaufman and Madhu Sudan. Sparse random linear codes are locally
decodable and testable. In Foundations of Computer Science, 2007.
FOCS’07. 48th Annual IEEE Symposium on, pages 590–600. IEEE,
2007.

[KS08] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role
of invariance. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 403–412. ACM, 2008.

[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate
codes with sublinear-time decoding. Journal of the ACM (JACM),
61(5):28, 2014.

285

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding
procedures for error-correcting codes. In Proceedings of the 32nd annual
ACM symposium on Theory of computing (STOC 2000), pages 80–86.
ACM Press, 2000.

[KW04] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-
query locally decodable codes via a quantum argument. J. of Computer
and System Sciences, 69:395–420, 2004. Preliminary version appeared
in STOC’03.

[Lip90] Richard J. Lipton. Efficient checking of computations. In Annual Sym-
posium on Theoretical Aspects of Computer Science, pages 207–215.
Springer, 1990.

[LN83] Rudolf Lidl and Harald Niederreiter. Finite fields. In Gian-Carlo Rota,
editor, Finite Fields, volume 20 of Encyclopedia of Mathematics and its
Applications. Addison-Wesley, Reading, Massachusetts, 1983.

[Lov18] Shachar Lovett. A proof of the GM-MDS conjecture. Electronic Collo-
quium on Computational Complexity (ECCC), 25:47, 2018.

[LT79] Joram Lindenstrauss and Lior Tzafriri. Classical Banach spaces. II,
volume 97 of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results
in Mathematics and Related Areas]. Springer-Verlag, Berlin-New York,
1979. Function spaces.

[LT13] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces:
isoperimetry and processes. Springer Science & Business Media, 2013.

[LVW17] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Conditional
disclosure of secrets via non-linear reconstruction. In Annual Interna-
tional Cryptology Conference, pages 758–790. Springer, 2017.

[LVW18] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Towards break-
ing the exponential barrier for general secret sharing. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, pages 567–596. Springer, 2018.

[LZ17] Eyal Lubetzky and Yufei Zhao. On the variational problem for up-
per tails in sparse random graphs. Random Structures & Algorithms,
50(3):420–436, 2017.

[Mau03] Bernard Maurey. Type, cotype and K-convexity. In Handbook of the
geometry of Banach spaces, Vol. 2, pages 1299–1332. North-Holland,
Amsterdam, 2003.

[MBG+13] A.J. Menezes, I.F. Blake, X.H. Gao, R.C. Mullin, S.A. Vanstone, and
T. Yaghoobian. Applications of Finite Fields. The Springer Interna-
tional Series in Engineering and Computer Science. Springer US, 2013.

286

[McD84] B. R. McDonald. Linear Algebra Over Commutative Rings. Pure and
Applied Mathematics #87. Marcel Dekker, New York, 1984.

[Mei09] Or Meir. Combinatorial construction of locally testable codes. SIAM
Journal on Computing, 39(2):491–544, 2009.

[Mos53] Leo Moser. On non-averaging sets of integers. Canadian Mathematical
Society, 1953.

[MP73] Bernard Maurey and Gilles Pisier. Caractérisation d’une classe
d’espaces de Banach par des propriétés de séries aléatoires vectorielles.
C. R. Acad. Sci. Paris Sér A, 277:687—690, 1973.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting
Codes. North Holland, Amsterdam, New York, 1977.

[MT12] Michael Mitzenmacher and Justin Thaler. Peeling arguments and dou-
ble hashing. In Communication, Control, and Computing (Allerton),
2012 50th Annual Allerton Conference on, pages 1118–1125. IEEE,
2012.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and computing: Ran-
domized algorithms and probabilistic analysis. Cambridge University
Press, 2005.

[MV03] Shachar Mendelson and Roman Vershynin. Entropy and the combina-
torial dimension. Invent. Math., 152(1):37–55, 2003.

[MW15] Ryuhei Mori and Osamu Watanabe. Peeling algorithm on random
hypergraphs with superlinear number of hyperedges. arXiv preprint
arXiv:1506.00718, 2015.

[NSZ18] Martin Nägeld, Benny Sudakov, and Rico Zenklusen. Submodular min-
imization under congruency constraints. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
849–866. SIAM, 2018.

[OAC+17] Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez,
Sergey Yekhanin, Konstantin Makarychev, Miklos Z Racz, Govinda Ka-
math, Parikshit Gopalan, Bichlien Nguyen, et al. Scaling up dna data
storage and random access retrieval. bioRxiv, page 114553, 2017.

[Oba02] Kenji Obata. Optimal lower bounds for 2-query locally decodable linear
codes. In International Workshop on Randomization and Approximation
Techniques in Computer Science, pages 39–50. Springer, 2002.

[OSI07] Rafail Ostrovsky and William E Skeith III. A survey of single-database
private information retrieval: Techniques and applications. In Public
Key Cryptography–PKC 2007, pages 393–411. Springer, 2007.

287

[PD14] Dimitris S Papailiopoulos and Alexandros G Dimakis. Locally
repairable codes. IEEE Transactions on Information Theory,
60(10):5843–5855, 2014.

[PGM13] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming fast Galois field
arithmetic using Intel SIMD instructions. In 11th Usenix Conference
on File and Storage Technologies (FAST), pages 299–306, San Jose,
February 2013.

[Pis12] Gilles Pisier. 15th workshop on non-commutative harmonic analysis,
BÄŹdlewo, Poland, 2012.

[Rag07] Prasad Raghavendra. A note on yekhaninâĂŹs locally decodable codes.
In Electronic Colloquium on Computational Complexity (ECCC), vol-
ume 14, 2007.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of poly-
nomials with applications to program testing. SIAM J. Comput.,
25(2):252–271, 1996.

[RY06] Alexander A. Razborov and Sergey Yekhanin. An Ω(n1/3) lower bound
for bilinear group based private information retrieval. In FOCS, pages
739–748, 2006.

[Rya02] Raymond A. Ryan. Introduction to tensor products of Banach spaces.
Springer Monographs in Mathematics. Springer-Verlag London Ltd.,
London, 2002.

[SAP+13] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris S. Papail-
iopoulos, Alexandros G. Dimakis, Ramkumar Vadali, Scott Chen, and
Dhruba Borthakur. XORing elephants: novel erasure codes for big data.
In Proceedings of VLDB Endowment (PVLDB), pages 325–336, 2013.

[Sár78a] András Sárközy. On difference sets of sequences of integers. I. Acta
Mathematica Hungarica, 31(1-2):125–149, 1978.

[Sár78b] András Sárközy. On difference sets of sequences of integers. III. Acta
Mathematica Hungarica, 31(3-4):355–386, 1978.

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27(3):379–423, 1948.

[Sil09] J.H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in
Mathematics. Springer New York, 2009.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom genera-
tors without the xor lemma. Journal of Computer and System Sciences,
62(2):236–266, 2001.

288

[Sud97] Madhu Sudan. Decoding of reed solomon codes beyond the error-
correction bound. J. Complexity, 13(1):180–193, 1997.

[Sze75] Endre Szemerédi. On sets of integers containing no k elements in arith-
metic progression. Acta Arith, 27(299-345):21, 1975.

[Tal14a] Michel Talagrand. Upper and lower bounds for stochastic processes, vol-
ume 60 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.
A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Math-
ematics]. Springer, Heidelberg, 2014. Modern methods and classical
problems.

[Tal14b] Michel Talagrand. Upper and lower bounds for stochastic processes, vol-
ume 60 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.
A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Math-
ematics]. Springer, Heidelberg, 2014. Modern methods and classical
problems.

[Tao07] Terence Tao. The ergodic and combinatorial approaches to Szemerédi’s
theorem. In CRM Proc. Lecture Notes, volume 43, pages 145–193, 2007.

[Tao12] Terence Tao. Higher order Fourier analysis, volume 142. American
Mathematical Society, 2012.

[Tao14] Terence Tao. Algebraic combinatorial geometry: the polynomial
method in arithmetic combinatorics, incidence combinatorics, and num-
ber theory. EMS Surv. Math. Sci., 1:1–46, 2014.

[TB98] Gabor Tardos and DA Mix Barrington. A lower bound on the mod
6 degree of the or function. Computational Complexity, 7(2):99–108,
1998.

[TB14] Itzhak Tamo and Alexander Barg. A family of optimal locally recover-
able codes. IEEE Transactions on Information Theory, 60:4661–4676,
2014.

[Tho83] Christian Thommesen. The existence of binary linear concatenated
codes with reed - solomon outer codes which asymptotically meet
the gilbert- varshamov bound. IEEE Trans. Information Theory,
29(6):850–853, 1983.

[TJ74] Nicole Tomczak-Jaegermann. The moduli of smoothness and convexity
and the rademacher averages of the trace classes s {p}(1âĽď p¡âĹđ).
Studia Mathematica, 50(2):163–182, 1974.

289

[TPD16] Itzhak Tamo, Dimitris Papailiopoulos, and Alexandros G. Dimakis. Op-
timal locally repairable codes and connections to matroid theory. IEEE
Transactions on Information Theory, 62:6661–6671, 2016.

[Tro15] Joel A Tropp. An introduction to matrix concentration inequalities.
arXiv preprint arXiv:1501.01571, 2015.

[TV06] T. Tao and V.H. Vu. Additive Combinatorics. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 2006.

[TW14] Madhur Tulsiani and Julia Wolf. Quadratic Goldreich-Levin theorems.
SIAM Journal on Computing, 43(2):730–766, 2014.

[TZ12] Terence Tao and Tamar Ziegler. The inverse conjecture for the gowers
norm over finite fields in low characteristic. Annals of Combinatorics,
16(1):121–188, 2012.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends R© in
Theoretical Computer Science, 7(1–3):1–336, 2012.

[Var57] R. R. Varshamov. Estimate of the number of signals in error correcting
codes. Doklady Akadamii Nauk, pages 739–741, 1957.

[Var59] Panayiotis Varnavides. On certain sets of positive density. Journal of
the London Mathematical Society, 1(3):358–360, 1959.

[Vid15] Michael Viderman. Explicit strong LTCs with inverse poly-log rate and
constant soundness. Electronic Colloquium on Computational Complex-
ity (ECCC), 22:20, 2015.

[War16] Lutz Warnke. Upper tails for arithmetic progressions in random subsets.
arXiv preprint: 1612.08559, 2016.

[WdW05a] Stephanie Wehner and Ronald de Wolf. Improved lower bounds for
locally decodable codes and private information retrieval. In ICALP,
pages 1424–1436, 2005.

[WDW05b] Stephanie Wehner and Ronald De Wolf. Improved lower bounds for
locally decodable codes and private information retrieval. In Interna-
tional Colloquium on Automata, Languages, and Programming, pages
1424–1436. Springer, 2005.

[Woo07] David Woodruff. New lower bounds for general locally decodable codes.
Electronic Colloquium on Computational Complexity (ECCC), 14(006),
2007.

[Woo08] David Woodruff. Corruption and recovery-efficient locally decodable
codes. In Approximation, Randomization and Combinatorial Optimiza-
tion. Algorithms and Techniques, pages 584–595. Springer, 2008.

290

[Woo12] David Woodruff. A quadratic lower bound for three-query linear locally
decodable codes over any field. J. Comput. Sci. Technol., 27(4):678–686,
2012.

[WTB17] Zhiying Wang, Itzhak Tamo, and Jehoshua Bruck. Optimal rebuilding
of multiple erasures in MDS codes. IEEE Transactions on Information
Theory, 63:1084–1101, 2017.

[WY05] David P. Woodruff and Sergey Yekhanin. A geometric approach to
information-theoretic private information retrieval. In IEEE Conference
on Computational Complexity, pages 275–284, 2005.

[WZ12] Trevor Wooley and Tamar Ziegler. Multiple recurrence and convergence
along the primes. American Journal of Mathematics, 134(6):1705–1732,
2012.

[YB17] Min Ye and Alexander Barg. Explicit constructions of high-rate MDS
array codes with optimal repair bandwidth. IEEE Transactions on
Information Theory, 63:2001–2014, 2017.

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of subexpo-
nential length. Journal of the ACM (JACM), 55(1):1, 2008.

[Yek12] Sergey Yekhanin. Locally decodable codes. Foundations and Trends R©
in Theoretical Computer Science, 6(3):139–255, 2012.

[YH18] Hikmet Yildiz and Babak Hassibi. Optimum linear codes with support
constraints over small fields. CoRR, abs/1803.03752, 2018.

291

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Codes with locality
	1.1.1 History and applications of local codes
	1.1.2 What is the cost of locality?

	1.2 Summary of contributions
	1.3 Future directions

	2 Preliminaries
	2.1 Notation
	2.2 Error Correcting Codes
	2.3 Locally Decodable Codes (LDCs)
	2.3.1 Smoothness
	2.3.2 An average-case to worst-case reduction
	2.3.3 Constructions for LDCs
	2.3.4 Lower bounds for constant query LDCs
	2.3.5 Exponential lower bound for two query LDCs
	2.3.6 Lower bounds for q-query LDCs?

	2.4 Locally Correctable Codes (LCCs)
	2.4.1 LDCs from LCCs
	2.4.2 Constructions for LCCs
	2.4.3 Lower bounds for LCCs

	2.5 Locally Testable Codes (LTCs)
	2.5.1 Constructions and lower bounds for LTCs

	2.6 Results and structure of this thesis

	3 Private Information Retrieval
	3.1 Introduction
	3.1.1 Main Results
	3.1.2 Proof Overview
	3.1.3 Organization

	3.2 LDCs and PIR
	3.2.1 Lower bounds for PIR

	3.3 Preliminaries
	3.3.1 The rings Lg
	3.3.2 Matrices over Commutative Rings
	3.3.3 Matching Vector Families

	3.4 Review of O(n)(1/3) cost 2-server PIR
	3.5 The new 2-server scheme: Proof of Theorem 3.1.2
	3.5.1 Working over Lg or Lg

	3.6 An Alternative Construction
	3.7 Generalization to more servers: Proof of Theorem 3.1.3
	3.7.1 Proof of Lemma 3.7.1

	3.8 Concluding remarks
	3.9 Subsequent work

	4 Locality near Gilbert-Varshamov bound
	4.1 Introduction
	4.1.1 Methods
	4.1.2 Further remarks
	4.1.3 Organization of this paper

	4.2 Preliminaries
	4.2.1 Error-correcting codes
	4.2.2 Locally list decodable and list recoverable codes.

	4.3 LTCs approaching the GV bound
	4.3.1 Approaching the GV bound via random concatenation
	4.3.2 LTCs approaching the GV bound

	4.4 Approaching the GV bound via random concatenation, again
	4.5 LCCs approaching the GV bound
	4.5.1 Proof overview and main ingredients
	4.5.2 Construction of C'
	4.5.3 Rate and relative distance of C'
	4.5.4 Local list decoding of C'
	4.5.5 Local correction of C'

	4.6 Local list recovery of Reed-Muller codes
	4.6.1 Proof of Lemma 4.5.3
	4.6.2 Tolerant local testing of Reed-Muller codes - Proof of Lemma 4.6.3

	4.7 Distance amplification for local list recovery
	4.8 Johnson Bound for List Recovery

	5 LDCs from Outlaw distributions
	5.1 Introduction
	5.1.1 LDCs from distributions over smooth Boolean functions
	5.1.2 Techniques
	5.1.3 Organization

	5.2 Preliminaries
	5.2.1 Fourier analysis on the Boolean cube

	5.3 From outlaws to average-case smooth codes
	5.4 From LDCs to outlaws
	5.5 Candidate outlaws
	5.5.1 Incidence geometry
	5.5.2 Hypergraph pseudorandomness

	6 Lower bounds for affine invariant local codes
	6.1 Introduction
	6.1.1 Related Work
	6.1.2 Proof Overview

	6.2 Preliminaries
	6.2.1 Error-correcting codes and affine invariance
	6.2.2 Higher order Fourier analysis
	6.2.3 A net for Gowers norm

	6.3 Locally Correctable Codes
	6.4 Locally Testable Codes
	6.5 Proof of generalized von Neumann inequality (Lemma 6.2.5)
	6.6 Conclusions

	7 Lower bounds for 2-query LCCs
	7.1 Introduction
	7.1.1 Discussion of Main Result
	7.1.2 Proof Overview

	7.2 Matching lemma for zero-error LCCs
	7.3 Proof of lower bound
	7.3.1 An information theoretic lemma
	7.3.2 Proof of Theorem 7.1.2
	7.3.3 Proof of Claim 7.3.3

	8 Applications to additive combinatorics
	8.1 Introduction
	8.1.1 Random differences in Szemerédi's Theorem
	8.1.2 Large deviations for arithmetic progressions
	8.1.3 Relation to LDCs
	8.1.4 Gaussian width bounds from type constants

	8.2 Proof of Theorem 8.1.1
	8.3 Proof of the matrix lemma
	8.4 Proof of the generalized birthday paradox.
	8.5 Random differences in Szemerédi's Theorem
	8.6 Upper tails for arithmetic progressions in random sets
	8.7 Proof of Lemma 8.1.5

	9 Local codes for distributed storage
	9.1 Introduction
	9.1.1 State of the art and our results
	9.1.2 Our techniques
	9.1.3 Related work
	9.1.4 Organization

	9.2 Preliminaries
	9.3 The lower bound
	9.3.1 Lower bound when Lg
	9.3.2 Lower bound when Lg

	9.4 Maximally recoverable LRCs with Lg
	9.5 Maximally recoverable LRCs with Lg
	9.6 Maximally recoverable LRCs from elliptic curves
	9.6.1 LRCs from matching collinear triples
	9.6.2 Matching Collinear Triples from AP free sets

	9.7 Open problems
	9.8 Proof of Proposition 9.3.7
	9.9 Determinantal identities
	9.10 Proof of Lemma 9.4.3

	Bibliography

